NLP_Bag-Of-Words(词袋模型)

文章目录

  • 词袋模型
  • 用词袋模型计算文本相似度
    • 1.构建实验语料库
    • 2.给句子分词
    • 3.创建词汇表
    • 4.生成词袋表示
    • 5.计算余弦相似度
    • 6.可视化余弦相似度
  • 词袋模型小结


词袋模型

词袋模型是一种简单的文本表示方法,也是自然语言处理的一个经典模型。它将文本中的词看作一个个独立的个体,不考虑它们在句子中的顺序,只关心每个词出现的频次,如下图所示
在这里插入图片描述

用词袋模型计算文本相似度

在这里插入图片描述

1.构建实验语料库

# 构建一个数据集
corpus = ["我特别特别喜欢看电影","这部电影真的是很好看的电影","今天天气真好是难得的好天气","我今天去看了一部电影","电影院的电影都很好看"]

2.给句子分词

# 对句子进行分词
import jieba # 导入 jieba 包
# 使用 jieba.cut 进行分词,并将结果转换为列表,存储在 corpus_tokenized 中
corpus_tokenized = [list(jieba.cut(sentence)) for sentence in corpus]

3.创建词汇表

# 创建词汇表
word_dict = {} # 初始化词汇表
# 遍历分词后的语料库
for sentence in corpus_tokenized:for word in sentence:# 如果词汇表中没有该词,则将其添加到词汇表中if word not in word_dict:word_dict[word] = len(word_dict) # 分配当前词汇表索引
print(" 词汇表:", word_dict) # 打印词汇表

在这里插入图片描述

4.生成词袋表示

# 根据词汇表将句子转换为词袋表示
bow_vectors = [] # 初始化词袋表示
# 遍历分词后的语料库
for sentence in corpus_tokenized:# 初始化一个全 0 向量,其长度等于词汇表大小sentence_vector = [0] * len(word_dict)for word in sentence:# 将对应词的索引位置加 1,表示该词在当前句子中出现了一次sentence_vector[word_dict[word]] += 1# 将当前句子的词袋向量添加到向量列表中bow_vectors.append(sentence_vector)
print(" 词袋表示:", bow_vectors) # 打印词袋表示

在这里插入图片描述

5.计算余弦相似度

计算余弦相似度(Cosine Similarity),衡量两个文本向量的相似性。

余弦相似度可用来衡量两个向量的相似程度。它的值在-1到1之间,值越接近1,表示两个向量越相似;值越接近-1,表示两个向量越不相似;当值接近0时,表示两个向量之间没有明显的相似性。

在这里插入图片描述

余弦相似度和向量距离(Vector Distance)都可以衡量两个向量之间的相似性。余弦相似度关注向量之间的角度,而不是它们之间的距离,其取值范围在-1(完全相反)到1(完全相同)之间。向量距离关注向量之间的实际距离,通常使用欧几里得距离(Euclidean Distance)来计算。两个向量越接近,它们的距离越小。

如果要衡量两个向量的相似性,而不关心它们的大小,那么余弦相似度会更合适。因此,余弦相似度通常用于衡量文本、图像等高维数据的相似性,因为在这些场景下,关注向量的方向关系通常比关注距离更有意义。而在一些需要计算实际距离的应用场景,如聚类分析、推荐系统等,向量距离会更合适。

# 导入 numpy 库,用于计算余弦相似度
import numpy as np 
# 定义余弦相似度函数
def cosine_similarity(vec1, vec2):dot_product = np.dot(vec1, vec2) # 计算向量 vec1 和 vec2 的点积norm_a = np.linalg.norm(vec1) # 计算向量 vec1 的范数norm_b = np.linalg.norm(vec2) # 计算向量 vec2 的范数  return dot_product / (norm_a * norm_b) # 返回余弦相似度
# 初始化一个全 0 矩阵,用于存储余弦相似度
similarity_matrix = np.zeros((len(corpus), len(corpus)))
# 计算每两个句子之间的余弦相似度
for i in range(len(corpus)):for j in range(len(corpus)):similarity_matrix[i][j] = cosine_similarity(bow_vectors[i], bow_vectors[j])

6.可视化余弦相似度

# 导入 matplotlib 库,用于可视化余弦相似度矩阵
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
%matplotlib inline
from matplotlib.font_manager import FontProperties
font = FontProperties(fname='SimHei.ttf', size = 15)#plt.rcParams["font.family"]=['SimHei'] # 用来设定字体样式
#plt.rcParams['font.sans-serif']=['SimHei'] # 用来设定无衬线字体样式
#plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
fig, ax = plt.subplots() # 创建一个绘图对象
# 使用 matshow 函数绘制余弦相似度矩阵,颜色使用蓝色调
cax = ax.matshow(similarity_matrix, cmap=plt.cm.Blues)
fig.colorbar(cax) # 条形图颜色映射
ax.set_xticks(range(len(corpus))) # x 轴刻度
ax.set_yticks(range(len(corpus))) # y 轴刻度
ax.set_xticklabels(corpus, rotation=45, ha='left', FontProperties = font) # 刻度标签 
ax.set_yticklabels(corpus, FontProperties = font) # 刻度标签为原始句子
plt.show() # 显示图形

在这里插入图片描述

词袋模型小结

Bag-of-Words则是一种用于文本表示的技术,它将文本看作由单词构成的无序集合,通过统计单词在文本中出现的频次来表示文本。因此,Bag-of-Words主要用于文本分类、情感分析、信息检索等自然语言处理任务中。

  • (1) Bag-of-Words是基于词频将文本表示为一个向量,其中每个维度对应词汇表中的一个单词,其值为该单词在文本中出现的次数。
  • (2) Bag-of-Words忽略了文本中的词序信息,只关注词频。这使得词袋模型在某些任务中表现出色,如主题建模和文本分类,但在需要捕捉词序信息的任务中表现较差,如机器翻译和命名实体识别。
  • (3)Bag-of-Words 可能会导致高维稀疏表示,因为文本向量的长度取决于词汇表的大小。为解决这个问题,可以使用降维技术,如主成分分析(Principal Component Analysis,PCA)或潜在语义分析(Latent Semantic Analysis,LSA)。

学习的参考资料:
(1)书籍
利用Python进行数据分析
西瓜书
百面机器学习
机器学习实战
阿里云天池大赛赛题解析(机器学习篇)
白话机器学习中的数学
零基础学机器学习
图解机器学习算法

动手学深度学习(pytorch)

(2)机构
光环大数据
开课吧
极客时间
七月在线
深度之眼
贪心学院
拉勾教育
博学谷
慕课网
海贼宝藏

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/255637.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CRNN介绍:用于识别图中文本的深度学习模型

CRNN:用于识别图中文本的深度学习模型 CRNN介绍:用于识别图中文本的深度学习模型CRNN的结构组成部分工作原理 CRNN结构分析卷积层(Convolutional Layers)递归层(Recurrent Layers)转录层(Transc…

数据库学习笔记2024/2/5

2. SQL 全称 Structured Query Language,结构化查询语言。操作关系型数据库的编程语言,定义了 一套操作关系型数据库统一标准 2.1 SQL通用语法 在学习具体的SQL语句之前,先来了解一下SQL语言的通用语法。 1). SQL语句可以单行或多行书写&…

【Effective Objective - C 2.0】——读书笔记(三)

文章目录 十五、用前缀避免命名空间冲突十六、提供全能初始化方法十七、实现description方法十八、尽量使用不可变对象十九、使用清晰而协调的命名方式二十、为私有方法名加前缀二十一、理解Objective-C错误模型二十二、理解NSCopying协议 十五、用前缀避免命名空间冲突 OC语言…

Maven - 编译报错:程序包 XXX 不存在(多模块项目)

问题描述 编译报错&#xff1a;程序包 XXX 不存在&#xff08;多模块项目&#xff09; 原因分析 检查依赖模块 pom 文件&#xff0c;看是不是引入了如下插件 <plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-pl…

go语言进阶篇——面向对象(一)

什么是面向对象 在我们设计代码时&#xff0c;比如写一个算法题或者写一个问题结局办法时&#xff0c;我们常常会使用面向过程的方式来书写代码&#xff0c;面向过程主要指的是以解决问题为中心&#xff0c;按照一步步具体的步骤来编写代码或者调用函数&#xff0c;他在问题规…

C#上位机与三菱PLC的通信05--MC协议之QnA-3E报文解析

1、MC协议回顾 MC是公开协议 &#xff0c;所有报文格式都是有标准 &#xff0c;MC协议可以在串口通信&#xff0c;也可以在以太网通信 串口&#xff1a;1C、2C、3C、4C 网口&#xff1a;4E、3E、1E A-1E是三菱PLC通信协议中最早的一种&#xff0c;它是一种基于二进制通信协…

Java 学习和实践笔记(6)

各数据类型所占的空间&#xff1a; byte: 1个字节 short&#xff1a;2个字节 int&#xff1a;4个 long&#xff1a;8个 float&#xff1a;4个 double: 8个 char:1个 boolean:1bit 所有引用数据类型都是4个字节&#xff0c;实际其值是指向该数据类型的地址。 上图中稍特…

百卓Smart管理平台 uploadfile.php 文件上传漏洞(CVE-2024-0939)

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

【前端web入门第五天】01 结构伪类选择器与伪元素选择器

文章目录: 1.结构伪类选择器 1.1 nth-child(公式) 2.伪元素选择器 1.结构伪类选择器 作用:根据元素的结构关系查找元素。 选择器说明E:first-child查找第一个E元素E:last-child查找最后一个E元素E:nth-child(N)查找第N个E元素&#xff08;第一个元素N值为1) 一个列表结构…

Spring基础 - SpringMVC请求流程和案例

Spring基础 - SpringMVC请求流程和案例 什么是MVC 用一种业务逻辑、数据、界面显示分离的方法&#xff0c;将业务逻辑聚集到一个部件里面&#xff0c;在改进和个性化定制界面及用户交互的同时&#xff0c;不需要重新编写业务逻辑。MVC被独特的发展起来用于映射传统的输入、处理…

服务器解析漏洞及任意文件下载

1.服务器文件解析漏洞 文件解析漏洞,是指Web容器&#xff08;Apache、nginx、iis等&#xff09;在解析文件时出现了漏洞,以其他格式执行出脚本格式的效果。从而,黑客可以利用该漏洞实现非法文件的解析。 &#xff08;1) Apache linux系统中的apache的php配置文件在/etc/apac…

【深蓝学院】移动机器人运动规划--第4章 动力学约束下的运动规划--笔记

0. Outline 1. Introduction 什么是kinodynamic&#xff1f; 运动学&#xff08;Kinematics&#xff09;和动力学&#xff08;Dynamics&#xff09;都是力学的分支&#xff0c;涉及物体的运动&#xff0c;但它们研究的焦点不同。 运动学专注于描述物体的运动&#xff0c;而…

假期day5

TCP UDP区别 共同点&#xff1a;都是属于传输层的协议 TCP&#xff1a;稳定。面向连接的&#xff0c;有可靠的数据传输服务。传输过程中数据无误&#xff0c;无丢失&#xff0c;无失序&#xff0c;无重复。传输效率低&#xff0c;耗费资源多。数据收发不同步&#xff0c;有沾…

每日五道java面试题之java基础篇(六)

第一题&#xff1a;Java 创建对象有哪⼏种⽅式&#xff1f; Java 中有以下四种创建对象的⽅式: new 创建新对象通过反射机制采⽤ clone 机制通过序列化机制 前两者都需要显式地调⽤构造⽅法。对于 clone 机制,需要注意浅拷⻉和深拷⻉的区别&#xff0c;对于序列化机制需要明…

AJAX——认识URL

1 什么是URL&#xff1f; 统一资源定位符&#xff08;英语&#xff1a;Uniform Resource Locator&#xff0c;缩写&#xff1a;URL&#xff0c;或称统一资源定位器、定位地址、URL地址&#xff09;俗称网页地址&#xff0c;简称网址&#xff0c;是因特网上标准的资源的地址&…

Linux网络编程——tcp套接字

文章目录 主要代码关于构造listen监听accepttelnet测试读取信息掉线重连翻译服务器演示 本章Gitee仓库&#xff1a;tcp套接字 主要代码 客户端&#xff1a; #pragma once#include"Log.hpp"#include<iostream> #include<cstring>#include<sys/wait.h…

2024-2-11-复习作业

1> 要求&#xff1a; 源代码&#xff1a; #include <stdio.h> int fun(int n) {if(n0) return 1;return n*fun(n-1); } int main(int argc, char const *argv[]) {/* code */int n;printf("enter n :");scanf("%d",&n);int sfun(n);printf(…

JVM 性能调优 - 常用的垃圾回收器(6)

垃圾收集器 在 JVM(Java虚拟机)中,垃圾收集器(Garbage Collector)是负责自动管理内存的组件。它的主要任务是在程序运行过程中,自动回收不再使用的对象所占用的内存空间,以便为新的对象提供足够的内存。 JVM中的垃圾收集器使用不同的算法和策略来实现垃圾收集过程,以…

【Ubuntu 20.04/22.04 LTS】最新 esp-matter SDK 软件编译环境搭建步骤

仓库链接&#xff1a;esp-matter SDK官方软件说明&#xff1a;ESP Matter Programming Guide官方参考文档&#xff1a;使用 Matter-SDK 快速搭建 Matter 环境 (Linux) 环境要求 Ubuntu 20.04 或 Ubuntu22.04网络环境支持访问 Gihub 在安装 esp-matter SDK 软件编译环境之前&a…

金融行业专题|证券超融合架构转型与场景探索合集(2023版)

更新内容 更新 SmartX 超融合在证券行业的覆盖范围、部署规模与应用场景。新增操作系统信创转型、Nutanix 国产化替代、网络与安全等场景实践。更多超融合金融核心生产业务场景实践&#xff0c;欢迎阅读文末电子书。 在金融行业如火如荼的数字化转型大潮中&#xff0c;传统架…