Hive调优——合并小文件

目录

一、小文件产生的原因

二、小文件的危害

三、小文件的解决方案

3.1 小文件的预防

3.1.1 减少Map数量

 3.1.2 减少Reduce的数量

3.2 已存在的小文件合并

3.2.1 方式一:insert overwrite (推荐)

 3.2.2 方式二:concatenate

 3.2.3 方式三:使用hive的archive归档

3.2.4 方式四:hadoop getmerge

一、小文件产生的原因

  • 数据源本身就包含大量的小文件,例如api,kafka消息管道等。
  • 动态分区插入数据的时候,会产生大量的小文件,从而导致map数量剧增;;
  • reduce 数量越多,小文件也越多,小文件数量=ReduceTask数量*分区数;
  • hive中的小文件是向 hive 表中导入数据时产生;

向 hive 中导入数据的几种方式:

(1)直接向表中插入数据

insert into table t_order2 values (1,'zhangsan',88),(2,'lisi',61);

     这种方式每次插入时都会产生一个小文件,多次插入少量数据就会出现多个小文件,故这种方式生产环境基本不使用;

(2)通过load方式加载数据

-- 导入文件
load data local inpath "/opt/module/hive_data/t_order.txt" overwrite into table t_order;
-- 导入文件夹
load data local inpath "/opt/module/hive_data/t_order" overwrite into table t_order;

     使用 load方式可以导入文件或文件夹,当导入一个文件时,hive表就有一个文件,当导入文件夹时,hive表的文件数量为文件夹下所有文件的数量;

(3)通过查询方式加载数据

insert overwrite t_order  select oid,uid from t_order2

   这种方式是生产环境中经常用的,也是最容易产生小文件的方式。insert 导入数据时会启动MR任务,MR-reduce的个数与输出文件个数一致。

    因此,hdfs的文件数量=  reduceTask数量* 分区数,有些fetch本地抓取任务(例如:简单的 select * from tableA)仅有map阶段,那此时文件个数 = mapTask数量*分区数

二、小文件的危害

        小文件通常是指文件大小要比HDFS块大小(一般是128M)还要小很多的文件。

  • NameNode在内存中维护整个文件系统的元数据镜像、其中每个HDFS文件元数据信息(位置、大小、分块等)对象约占150字节,如果小文件过多会占用大量内存,会直接影响NameNode性能。相对的,HDFS读写小文件也会更加耗时,因为每次都需要从NameNode获取元信息,并与对应的DataNode建立pipeline连接。

  • 从 Hive 角度看,一个小文件会开启一个 MapTask,一个 MapTask开一个 JVM 去执行,这些任务的启动及初始化,会浪费大量的资源,严重影响性能。

三、小文件的解决方案

   小文件的解决思路主要有两个方向:1.小文件的预防;2.已存在的小文件合并

3.1 小文件的预防

     通过调整参数进行合并,在 hive 中执行 insert overwrite  tableA select xx  from tableB 之前设置如下合并参数,即可自动合并小文件。

3.1.1 减少Map数量

         在Map前进行输入合并,从而减少mapper任务的数量。

  • 设置map输入时的合并参数:
#执行Map前进行小文件合并
#CombineHiveInputFormat底层是 Hadoop的 CombineFileInputFormat 方法
#此方法是在mapper中将多个文件合成一个split切片作为输入
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; -- 默认#每个Map最大的输入大小(这个值决定了合并后文件的数量)
set mapred.max.split.size=256*1000*100;   -- 256M
#一个节点上split的至少的大小(这个值决定了多个DataNode上的文件是否需要合并)
set mapred.min.split.size.per.node=100*100*100;  -- 100M
#一个交换机下split的至少的大小(这个值决定了多个交换机上的文件是否需要合并)
set mapred.min.split.size.per.rack=100*100*100; -- 100M
  • 设置map端输出时和reduce端输出时的合并参数:
#设置map端输出进行合并,默认为true
set hive.merge.mapfiles = true;
#设置reduce端输出进行合并,默认为false
set hive.merge.mapredfiles = true;
#设置合并文件的大小
set hive.merge.size.per.task = 256*1000*1000;   -- 256M
#当输出文件的平均大小小于该值时,启动一个独立的MapReduce任务进行文件merge
set hive.merge.smallfiles.avgsize=16000000;   -- 16M
  • 启用压缩(小文件合并后,也可以选择启用压缩)
# hive的查询结果输出是否进行压缩
set hive.exec.compress.output=true;
# MapReduce Job的结果输出是否使用压缩
set mapreduce.output.fileoutputformat.compress=true;
#设置压缩方式是snappy
set parquet.compression = snappy;

 3.1.2 减少Reduce的数量

#reduce的个数决定了输出的文件的个数,所以可以调整reduce的个数控制hive表的文件数量,
#通过设置reduce的数量,利用distribute by使得数据均衡的进入每个reduce。
#设置reduce的数量有两种方式,第一种是直接设置reduce个数
set mapreduce.job.reduces=10;#第二种是设置每个reduceTask的大小,Hive会根据数据总大小猜测确定一个reduce个数
set hive.exec.reducers.bytes.per.reducer=512*1000*1000; -- 默认是1G,这里为设置为5G#执行以下语句,将数据均衡的分配到reduce中
set mapreduce.job.reduces=10;insert overwrite table A partition(dt)
select * from B
distribute by  cast(rand()*10 as int);解释:如设置reduce数量为10,则使用cast(rand()*10 as int),生成0-10之间的随机整数,根据【随机整数 % 10】计算分区编号,这样数据就会均衡的分发到各reduce中,防止出现有的文件过大或过小

3.2 已存在的小文件合并

      对集群上已存在的小文件进行定时或实时的合并操作,定时操作可在访问低峰期操作,如凌晨2点,合并操作主要有以下几种方式:

3.2.1 方式一:insert overwrite (推荐)

执行流程总体如下:

(1)创建备份表(创建备份表时需和原表的表结构一致)

create table test.table_hive_back like test.table_hive ;

(2)设置合并文件相关参数,并使用insert overwrite 语句读取原表,再插入备份表

  • 设置合并文件相关参数

       使用 hive的merger合并参数,在正式 insert overwrite 之前做一个合并,合并的时候注意设置好压缩,不然文件会比较大。

  • 合并文件至备份表中,执行前保证没有数据写入原表
#如果有多级分区,将分区名放到partition中
insert overwrite table test.table_hive_back partition(batch_date) 
select * from test.table_hive;

 psinsert overwrite table test.table_hive_back 备份表的时候,可以使用distribute by 命令设置合并后的batch_date分区下的文件数据量

insert overwrite table 目标表 [partition(hour=...)] select * from 目标表 
distribute by cast( rand() * 具体最后落地生成多少个文件数 as int);
  • insert overwrite会重写数据,先进行删除后插入(不用担心如果overwrite失败,数据没了,这里面是有事务保障的);

  • distribute by分区控制数据从map端发往到哪个reduceTask中,distribute by的分区规则:分区字段的hashcode值对reduce 个数取模后, 余数相同的数据会分发到同一个reduceTask中。

  • rand()函数:生成0-1的随机小数,控制最终输出多少个文件。

# 使用distribute by rand()将数据随机分配给reduce,这样可以使得每个reduce处理的数据大体一致。 避免出现有的文件特别大, 有的文件特别小,例如:控制dt分区目录下生成100个文件,那么hsql如下:
insert overwrite table A partition(dt)select * from B
distribute by cast(rand()*100 as int);#cast(rand()*100 as int) 可以生成0-100的随机整数

     如果合并之后的文件竟然还变大了,可能是 select from的原数据是被压缩的,但是insert overwrite目标表的时候,没有设置输出文件压缩功能,解决方案:

# hive的查询结果输出是否进行压缩
set hive.exec.compress.output=true;
# MapReduce Job的结果输出是否使用压缩
set mapreduce.output.fileoutputformat.compress=true;
#设置压缩方式是snappy
set parquet.compression = snappy;

(3)确认表数据一致后,将原表修改名称为临时表tmp,将备份表修改名称为原表

  • 先查看原表和备份表数据量,确保表数据一致
#查看原表和备份表数据量
set hive.compute.query.using.stats=false ;
set hive.fetch.task.conversion=none;
SELECT count(*) FROM test.table_hive;
SELECT count(*) FROM test.table_hive_back ;
  • 将原表修改名称为临时表tmp,将备份表修改名称为原表
alter table test.table_hive rename to test.table_hive_tmp;
alter table test.table_hive_back rename to test.table_hive ;

(4)查看合并后的分区数和小文件数量

    正常情况下:hdfs文件系统上的table_hive表的分区数量没有改变,但是每个分区的几个小文件已经合并为一个文件。

#统计合并后的分区数
[atguigu@bigdata102 ~]$ hdfs dfs -ls /user/hive/warehouse/test/table_hive
#统计合并后的分区数下的文件数
[atguigu@bigdata102 ~]$ hdfs dfs -ls /user/hive/warehouse/test/table_hive/batch_date=20210608

  例如:

(5)观察一段时间后再删除临时表

drop  table test.table_hive_tmp ;

     ps:注意修改hive表名的时候,对应表的存储路径会发生变化,如果有新的任务上传数据到具体路径,需要注意可能需要修改。

 3.2.2 方式二:concatenate

      对于orc文件,可以使用hive自带的 concatenate 命令,自动合并小文件

#对于非分区表
alter table test concatenate;#对于分区表
alter table test [partition(...)] concatenate
#例如:alter table test partition(dt='2021-05-07',hr='12') concatenate;

注意: 

  • concatenate 命令只支持 rcfile和 orc文件类型。 
  • concatenate命令合并小文件时不能指定合并后的文件数量,但可以多次执行该命令。 
  • 当多次使用concatenate后文件数量不变化,这个跟参数 mapreduce.input.fileinputformat.split.minsize=256mb 的设置有关,可设定每个文件的最小size。

 3.2.3 方式三:使用hive的archive归档

    每日定时脚本,对于已经产生小文件的hive表使用har归档,然后已归档的分区不能insert overwrite ,必须先unarchive

#用来控制归档是否可用
set hive.archive.enabled=true;#通知Hive在创建归档时是否可以设置父目录
set hive.archive.har.parentdir.settable=true;#控制需要归档文件的大小
set har.partfile.size=256000000;#对表的某个分区进行归档
alter table test_rownumber2 archive partition(dt='20230324');#对已归档的分区恢复为原文件
alter table test_rownumber2 unarchive partition(dt='20230324');

3.2.4 方式四:hadoop getmerge

  对于txt格式的文件可以使用hadoop getmerge命令来合并小文件。使用 getmerge 命令先合并数据到本地,再通过put命令回传数据到hdfs。

  • 将hdfs上分区为pdate=20220815,文件路径为  /user/hive/warehouse/xxxx.db/xxxx/pdate=20220815/* 下载到linux 本地进行合并文件,本地路径为:/home/hadoop/pdate/20220815

         hadoop fs -getmerge  /user/hive/warehouse/xxxx.db/xxxx/pdate=20220815/*  /home/hadoop/pdate/20220815;

  •  将hdfs源分区数据删除

        hadoop fs -rm  /user/hive/warehouse/xxxx.db/xxxx/pdate=20220815/*

  • 在hdfs上新建分区

      hadoop fs -mkdir -p /user/hive/warehouse/xxxx.db/xxxx/pdate=20220815

  • 将本地合并后的文件回传到hdfs上

         hadoop fs -put  /home/hadoop/pdate/20220815  /user/hive/warehouse/xxxx.db/xxxx/pdate=20220815/*

参考文章:

HIVE中小文件问题_hive小文件产生的原因-CSDN博客

Hive教程(09)- 彻底解决小文件的问题-阿里云开发者社区

0704-5.16.2-如何使用Hive合并小文件-腾讯云开发者社区-腾讯云

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/257047.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Word Embedding+Keras进行自然语言处理NLP

目录 介绍: one-hot: pad_sequences: 建模: 介绍: Word Embedding是一种将单词表示为低维稠密向量的技术。它通过学习单词在文本中的上下文关系,将其映射到一个连续的向量空间中。在这个向量空间中,相似的单词在空间…

Java运算符和表达式

Java运算符和表达式 和C语言一样,java也有基础的运算符和表达式,用来完成一些基础的数学计算,以及逻辑运算,我们一起来学习一下吧。 算数运算符 首先,这个算数运算符与数学中即C语言的运算符的功能一样,利…

OpenCV基础:用Python生成一幅黑白图像

使用Python:生成一幅左黑右白的灰度图像,图像大小为1616像素。借助OpenCV库。输出数值,并显示图像。 # -*- coding: utf-8 -*- """ Created on Wed Feb 14 21:45:45 2024author: 李立宗公众号:计算机视觉之光知识…

Java基于微信小程序的医院挂号系统

文章目录 1 简介2 技术栈3 系统目标3.2 系统功能需求分析3.2.1 功能需求分析 4 系统模块设计4.1 数据库模块设计 5 系统的实现5.1 微信小程序个人中心5.2 科**室内容查看的实现**5.3 预约挂号的实现5.4 后台管理界面实现5.5 医生预约管理5.6 医生信息管理 参考文献7 推荐阅读8 …

随机过程及应用学习笔记(二)随机过程的基本概念

随机过程论就是研究随时间变化的动态系统中随机现象的统计规律的一门数学学科。 目录 前言 一、随机过程的定义及分类 1、定义 2、分类 二、随机过程的分布及其数字特征 1、分布函数 2、数字特征 均值函数和方差函数 协方差函数和相关函数 3、互协方差函数与互相关函…

每日五道java面试题之java基础篇(七)

第一题. HashMap和HashTable有什么区别?其底层实现是什么? 区别 : HashMap⽅法没有synchronized修饰,线程⾮安全,HashTable线程安全;HashMap允许key和value为null,⽽HashTable不允许 底层实现…

AI:125-基于深度学习的航拍图像中地物变化检测

🚀点击这里跳转到本专栏,可查阅专栏顶置最新的指南宝典~ 🎉🎊🎉 你的技术旅程将在这里启航! 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带有在本地跑过的关键代码,详细讲解供…

Linux命令行全景指南:从入门到实践,掌握命令行的力量

目录 知识梳理思维导图: linux命令入门 为什么要学Linux命令 什么是终端 什么是命令 关于Linux命令的语法 tab键补全 关于命令提示符 特殊目录 常见重要目录 /opt /home /root /etc /var/log/ man命令 shutdown命令 history命令 which命令 bash…

C# OCR识别图片中的文字

1、从NuGet里面安装Spire.OCR 2、安装之后,找到安装路径下,默认生成的packages文件夹,复制该文件夹路径下的 6 个dll文件到程序的根目录 3、调用读取方法 OcrScanner scanner new OcrScanner(); string path "C:\1.png"; scann…

算法刷题:盛水最多的容器

盛水最多的容器 .习题链接题目题目解析算法原理我的答案 . 习题链接 盛水最多的容器 题目 题目解析 VH*W h为左右两边低的一边,w为左右两边之间的距离 算法原理 定义两个指针 left0,rightn-1; left从左往右对数组进行遍历,right从右往左进行遍历 遍历的过程中,每一次都需要…

2000-2021年县域指标统计数据库

2000-2021年县域统计数据库 1、时间:2000-2021年 2、来源:县域统计年鉴 3、范围:2500县 5、指标: 地区名称、年份、行政区域代码、所属城市、所属省份、行政区域土地面积平方公里、乡及镇个数个、乡个数个、镇个数个、街道办…

锁(二)队列同步器AQS

一、队列同步器AQS 1、定义 用来构建锁或者其他同步组件的基础框架,它使用了一个int成员变量表示同步状态,通过内置的FIFO队列来完成资源获取线程的排队工作。是实现锁的关键。 2、实现 同步器的设计是基于模板方法模式的,也就是说&#…

【刷题记录】——时间复杂度

本系列博客为个人刷题思路分享,有需要借鉴即可。 1.目录大纲: 2.题目链接: T1:消失的数字:LINK T2:旋转数组:LINK 3.详解思路: T1: 思路1:先排序&#xf…

Android:国际化弹出框

3.13 风格与主题、国际化 1、应用国际化 应用国际化&#xff0c;通过修改系统语言&#xff0c;应用显示语言跟着改变。 选择Locale,点击>>符号。 创建多个国家&#xff0c;地区strings.xml文件&#xff0c;有一个默认strings.xml文件&#xff0c;各个stirngs.xml中<…

MySQL数据库⑨_事务(四个属性+回滚提交+隔离级别+MVCC)

目录 1. 事务的概念和四个属性 2. 事务的支持版本 3. 事务的提交方式 4. 事务的相关演示 4.1 常规操作_回滚_提交 4.2 原子性_演示 4.3 持久性_演示 4.4 begin自动更改提交方式 4.5 单条SQL与事务的关系 5. 事务的隔离级别 5.1 四种隔离级别 5.2 查看与设置隔离级别…

mfc110.dll是什么?解决mfc110.dll丢失windows系统常见问题

今天我在打开电脑软件时候&#xff0c;突然报错出现找不到mfc110.dll丢失&#xff0c;无法打开软件&#xff0c;我不知道是什么原因&#xff0c;后面找了很久才找到解决方法&#xff0c;那么mfc110.dll是什么&#xff1f;为什么会丢失和mfc110.dll解决方法是什么&#xff0c;今…

【Web】Redis未授权访问漏洞学习笔记

目录 简介 靶机配置 Redis持久化 Redis动态修改配置 webshell 反弹shell Redis写入反弹shell任务 加固方案 简介 Redis&#xff08;Remote Dictionary Server 远程字典服务器&#xff09;是一个开源的内存数据库&#xff0c;也被称为数据结构服务器&#xff0c;它支持…

CSS介绍

本章目标&#xff1a; CSS概述 三种样式表 简单选择器 复合选择器 盒子模型 常用背景样式 浮动 常用文本样式 伪类样式 列表样式 表格样式 定位 一、CSS概述: CSS&#xff1a;cascading style sheets-层叠样式表 专门负责对网页的美化 二、有三种使用方式&…

《金融人工智能:用python实现ai量化交易》

融合了数学、python、深度学习以及金融知识&#xff0c;是本推荐的好书。请收藏本文&#xff0c;读后再给大学总结。

解密 ARMS 持续剖析:如何用一个全新视角洞察应用的性能瓶颈?

作者&#xff1a;饶子昊、杨龙 应用复杂度提升&#xff0c;根因定位困难重重 随着软件技术发展迭代&#xff0c;很多企业软件系统也逐步从单体应用向云原生微服务架构演进&#xff0c;一方面让应用实现高并发、易扩展、开发敏捷度高等效果&#xff0c;但另外一方面也让软件应…