网络原理-TCP_IP(6)

网络层

在复杂的网络环境中确定一个合适的路径.

IP协议

与TCP协议并列,都是网络体系中最核心的协议.

基本概念

主机:配有IP地址,但是不进行路由控制的设备;

路由器:即配有IP地址,又能进行路由控制;

节点:主机和路由器的统称; 

协议头格式

4位版本号(version):指定IP协议的版本,对于IPv4来说,就是4.(只有两种:IPv4,IPv6).

4位头部长度(header length):IP头部的长度是多少个32bit,也就是length * 4的字节数,4bit表达的最大数字为15,因此IP的最大长度是60字节.(IP报头也是可以变长的).

8位服务类型(Type Of Sevice):3位优先权字段(已经弃用),4位TOS字段和一位保留字段(必须置为0).4位TOS分别表示:最小延时(吃饭快),最大吞吐量(吃饭多),最高可靠性(IP并非是像TCP一样提供了强可靠性,但是内部也有考虑,减小了丢包率),最小成本(硬件设备的开销).这四者互相冲突,只能选择一个.

16位总长度(total length):IP数据整体占多少字节.(即报头+载荷,虽然IP有长度限制,但也提供了拆包和组包的功能).

16位标识(id):唯一的标识主机发送的报文.如果报文在数据链路层被分片了,那么每一个片中的id都是相同的.(哪些数据应该在一起组装).

3位标志字段:第一位保留(保留的意思是现在不用,但是说不定以后要用到).第二位置为1表示禁止分片,这时候如果报文长度超过MTU,IP模块就会丢弃报文.第三位表示"更多分片",如果分片了话,最后一个分片置为1,其它是0,类似一个结束标记.

13位分片偏移(framegament offset):是分片相对于原始IP报文开始处的偏移.其实就是表示当前分片在原报文中的哪个位置,实际偏移的字节数是这个值*8得到的.因此,除了最后一个报文之外,其它报文的长度必须是8的整数倍(否则报文就不连续了).(组装包的先后顺序).

8位生存时间(Time To Live,TTL):数据报到达目的地的最大报文次数,一般是64.每次经过一个路由,TTL-=1,一直减到0还没有到达,那么就丢弃了,这个字段主要是为了防止路由循环.(小提示:在cmd窗口中使用tracert + 网络名指令)可以看到当前的网络路径是怎样的.

8位协议:表示上层协议的类型(传输层使用哪个协议).

16位头部校验和:使用CRC进行校验,来鉴别头部是否损坏.(不管载荷).

32位源地址和32位目标地址:表示发送端和接收端.(最关键的地方)采用的是点分十进制,3个点分成4个部分,每个部分1字节(0~255). -> IPv4. 希望每一个网络都有一个唯一的IP地址.(数值达到了2^32,约42亿9千万->可能不够用).

选项字段(不定长,最多40字节):略.

地址管理

定义:使用一套地址体系(IP地址),来描述互联网上每个设备所处的位置.(不仅仅是电脑/手机,路由器,服务器也有IP地址).

网段划分

网段划分是为了方便组网,因为比如公司,学校等人多,上网设备也多,网络环境复杂.

IP地址分为两个部分,网络号和主机号.

网络号:保证相互连接的两个网段具有不同的标识;

主机号:同一网段中,主机之间具有相同的网络号,但是必须由不同的主机号;

注意:两个相邻的局域网,网络号不能相同(一个路由器连接的网络就是相邻的).

不同的子网其实就是把网络号相同的主机放到一起;

如果在子网中新增一台主机,则这台主机的网络号和这个子网的网络号是一致的,但是主机号必须不能和子网中的其它主机重复.

通过合理设置主机号和网络号,就可以保证在相互连接的网络中,每台主机的IP地址都不相同.

那么问题来了,手动管理子网内的IP,是一个相当麻烦的事情.

有一种技术叫做DHCP,能够自动给子网内新增主机结点分配IP地址,避免了手动管理IP的不便

一般路由器都带有DHCP功能,因此路由器也可以看作是一个DHCP服务器.

过去(上古时期)曾经提出一种划分网络和主机号的方案(直接通过IP的前缀来起到设置网段的效果),把所有IP地址分为5类,如下图所示.

• A类 0.0.0.0到127.255.255.255
• B类 128.0.0.0到191.255.255.255
• C类 192.0.0.0到223.255.255.255
• D类 224.0.0.0到239.255.255.255
• E类 240.0.0.0到247.255.255.255 

随着互联网的快速发展,这种划分方案的局限性很快就体现了出来,大多数组织都申请B类网络地址,导致B类地址很快就消耗完了,而A类却浪费了大量的地址;(比较死板)

例如,申请了一个B类地址,理论上一个子网内能允许6w5k多个主机.A类地址的子网内的主机数中更多.

然而实际的网络架设中,不会存在一个子网内中有这么多个情况.因此大量的IP地址都被浪费掉了.

针对这种情况又提出了新的方案,称为CIDR:

引入一个额外的子网掩码(subnet mask)来区分网络号和主机号;

子网掩码也是一个32位的正整数.通常用一段"0"来结尾;

将IP地址和子网掩码进行"按位与"操作,得到的结果就是网络号;

网络号和主机号的划分与这个IP地址是A类,B类,还是C类无关;

特殊的IP地址

将IP地址中的主机地址全部设为0(eg.192.168.0.0),就成为了网络号,代表这个局域网(这个IP比较特殊,不能分配给某个主机).

将IP地址中的主机地址全部设为1(eg.192.168.0.255),就成为了广播地址,用于给同一个链路中相互连接的所有主机发送数据包(UDP);  广播地址:往广播地址上发信息,局域网中所有设备都能收到(一对多的传输).典型场景:手机投屏,电脑投屏.(要求:必须是同一个局域网) .连上wifi点投屏键,就提示了可投屏设备(通过广播完成).

127.*的IP地址(本机)用于本机环回测试,通常是127.0.0.1.

IP地址的数量限制

我们知道,IP地址(IPv4)是一个4字节32位的正整数.那么一共有2的32次方个IP地址,大概是43亿左右.而TCP/IP规定,每个主机都需要有一个IP地址.

这意味着,一共有43亿台主机能接入网络吗?

实际上,由于一些特殊IP地址的存在,数量远不足43亿;另外IP地址并非是按照主机台数来配置的,而是每一个网卡都需要配置一个或多个IP地址.

CIDR在一定程度上缓解了IP地址不够用的问题(提高了利用率,减小了浪费,但是IP地址的绝对上限没有增加),仍然不是很够用.需要用三种方法来解决:

动态分配IP地址:只给接入网络的设备分配IP地址.因此同一个MAC地址的设备,每次接入互联网中,得到的IP地址是不一定相同的;

NAT技术(后面重点介绍);

IPv6:IPv6并不是IPv4的简单升级版,这是两个互不相干的协议,彼此并不兼容;IPv6用16字节128位来表示一个IP地址;但是目前IPv6还没有普及;(IPv6的报头和IPv4是不兼容的,引入IPv6就意味着当前网络设备(路由器不支持),就需要更换为IPv6的设备).

 私有IP地址和公网IP地址

如果一个组织内部组建局域网,IP地址只用于局域网中的通信,而不是直接连接到Internet上,理论上,使用任意的IP地址都可以,但是RFC1918规定了用于组建局域网的私有IP地址.

公网设备访问公网设备,没有问题,直接访问即可;

局域网设备访问局域网设备(同一局域网中),没有问题;

局域网设备访问局域网设备(不同局域网当中),不允许访问;

局域网访问公网就要对局域网设备进行IP地址转换;

公网访问局域网设备,不允许访问.

10.*,前8位是网络号,共16777216个地址;

172.16.到172.31.,前12位是网络号,共1048576个地址

192.168.*,前16位是网络号,共65536个地址;

包含在这个范围内的都成为私有IP,其余为全局IP(公网IP);

你的设备只要连接上路由器,此时路由器就会给你自动分配;

一个路由器LAN口连接的主机,都从属于当前这个路由器的子网中;

不同的路由器,子网IP实际上都是一样的(通常是192.168.1.1).子网内的主机IP地址不能重复.但是子网之间的IP地址就可以重复了.

每一个家用路由器,其实又作为运营商路由器的子网中一个结点,这样运营商路由器就会有很多级,最外层的运营商路由器,WAN口IP就是一个公网IP了.

子网内主机需要和外网进行通信时,路由器将IP首部中的IP地址进行替换(替换成WAN口IP),这样逐级替换,最终数据包中的IP地址成为一个公网IP.(NAT技术).

如果希望我们自己实现的服务器程序,能够在公网中被访问到,就需要把程序部署在一台具有外网IP的服务器上.这样的服务器可以自行购买.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/258467.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JavaEE】spring boot快速上手

SpringBoot快速上手 文章目录 SpringBoot快速上手Maven会出现的一个官方bug创建完项目之后常用的的三个功能依赖管理Maven仓库中央仓库本地仓库国内源配置私服 springboot项目创建什么是springspring boot项目的创建Hello Worldweb服务器 SpringMVC什么是SpringWebMVC什么是MVC…

mpack简明教程

文章目录 摘要MessagePack简介MPACK的简单使用在定长的buffer存储不定长的数据读取截断的数据 摘要 本文先简单介绍MessagePack的基本概念。 然后,介绍一个MessagePack C API - MPack的通常使用。 接着尝试对MPack截断数据的读取。 注:本文完整代码见…

Android 13.0 SystemUI下拉状态栏定制二 锁屏页面横竖屏解锁图标置顶显示功能实现

1.前言 在13.0的系统rom定制化开发中,在关于systemui的锁屏页面功能定制中,由于在平板横屏锁屏功能中,时钟显示的很大,并且是在左旁边居中显示的, 由于需要和竖屏显示一样,所以就需要用到小时钟显示,然后同样需要居中,所以就来分析下相关的源码,来实现具体的功能 如图…

【MySQL】:DQL查询

🎥 屿小夏 : 个人主页 🔥个人专栏 : MySQL从入门到进阶 🌄 莫道桑榆晚,为霞尚满天! 文章目录 📑前言一. DQL1.1 基本语法1.2 基础查询1.3 条件查询1.3 聚合函数 🌤️ 全篇…

如何解决缓存和数据库的数据不一致问题

数据不一致问题是操作数据库和操作缓存值的过程中,其中一个操作失败的情况。实际上,即使这两个操作第一次执行时都没有失败,当有大量并发请求时,应用还是有可能读到不一致的数据。 如何更新缓存 更新缓存的步骤就两步&#xff0…

c语言--一维数组传参的本质(详解)

目录 一、前言二、代码三、形式3.1形式13.2形式2 四、总结 一、前言 首先从⼀个问题开始,我们之前都是在函数外部计算数组的元素个数,那我们可以把函数传给⼀个函数后,函数内部求数组的元素个数吗? 二、代码 直接上代码&#x…

初识Qt | 从安装到编写Hello World程序

文章目录 1.前端开发简单分类2.Qt的简单介绍3.Qt的安装和环境配置4.创建简单的Qt项目 1.前端开发简单分类 前端开发,这里是一个广义的概念,不单指网页开发,它的常见分类 网页开发:前端开发的主要领域,使用HTML、CSS …

『运维备忘录』之 Sed 命令详解

运维人员不仅要熟悉操作系统、服务器、网络等只是,甚至对于开发相关的也要有所了解。很多运维工作者可能一时半会记不住那么多命令、代码、方法、原理或者用法等等。这里我将结合自身工作,持续给大家更新运维工作所需要接触到的知识点,希望大…

C++中的volatile:穿越编译器的屏障

C中的volatile:穿越编译器的屏障 在C编程中,我们经常会遇到需要与硬件交互或多线程环境下访问共享数据的情况。为了确保程序的正确性和可预测性,C提供了关键字volatile来修饰变量。本文将深入解析C中的volatile关键字,介绍其作用、…

【c++】list 模拟

> 作者简介:დ旧言~,目前大二,现在学习Java,c,c,Python等 > 座右铭:松树千年终是朽,槿花一日自为荣。 > 目标:能手撕list模拟 > 毒鸡汤:不为模糊…

蓝桥杯:C++模运算、快速幂

模运算 模运算是大数运算中的常用操作。如果一个数太大,无法直接输出,或者不需要直接输出,则可以对它取模,缩小数值再输出。取模可以防止溢出,这是常见的操作。 模是英文mod的音译,取模实际上是求余。 取…

交通管理|交通管理在线服务系统|基于Springboot的交通管理系统设计与实现(源码+数据库+文档)

交通管理在线服务系统目录 目录 基于Springboot的交通管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户信息管理 2、驾驶证业务管理 3、机动车业务管理 4、机动车业务类型管理 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计…

【超级干货】ArcGIS_空间连接_工具详解

帮助里对空间连接的解释: 根据空间关系将一个要素的属性连接到另一个要素。 目标要素和来自连接要素的被连接属性写入到输出要素类。 如上图所示,关键在于空间关系,只有当两个要素存在空间关系的时候,空间连接才有用武之地。 一…

方式0控制流水灯循环点亮

#include<reg51.h> //包含51单片机寄存器定义的头文件 #include<intrins.h> //包含函数_nop_&#xff08;&#xff09;定义的头文件 unsigned char code Tab[]{0xFE,0xFD,0xFB,0xF7,0xEF,0xDF,0xBF,0x7F};//流水灯控制码&#xff0c;该数组被定义为全局变量 sbit…

《UE5_C++多人TPS完整教程》学习笔记15 ——《P16 会话接口委托(Session Interface Delegates)》

本文为B站系列教学视频 《UE5_C多人TPS完整教程》 —— 《P16 会话接口委托&#xff08;Session Interface Delegates&#xff09;》 的学习笔记&#xff0c;该系列教学视频为 Udemy 课程 《Unreal Engine 5 C Multiplayer Shooter》 的中文字幕翻译版&#xff0c;UP主&#xf…

2.12日学习打卡----初学RocketMQ(三)

2.12日学习打卡 目录&#xff1a; 2.12日学习打卡一. RocketMQ高级特性&#xff08;续&#xff09;消息重试延迟消息消息查询 二.RocketMQ应用实战生产端发送同步消息发送异步消息单向发送消息顺序发送消息消费顺序消息全局顺序消息延迟消息事务消息消息查询 一. RocketMQ高级特…

红蓝对抗:网络安全领域的模拟实战演练

引言&#xff1a; 随着信息技术的快速发展&#xff0c;网络安全问题日益突出。为了应对这一挑战&#xff0c;企业和组织需要不断提升自身的安全防护能力。红蓝对抗作为一种模拟实战演练方法&#xff0c;在网络安全领域得到了广泛应用。本文将介绍红蓝对抗的概念、目的、过程和…

【精品】关于枚举的高级用法

枚举父接口 public interface BaseEnum {Integer getCode();String getLabel();/*** 根据值获取枚举** param code* param clazz* return*/static <E extends Enum<E> & BaseEnum> E getEnumByCode(Integer code, Class<E> clazz) {Objects.requireNonN…

ASCII编码的诞生:解决字符标准化与跨平台通信的需求

title: ASCII编码的诞生&#xff1a;解决字符标准化与跨平台通信的需求 date: 2024/2/17 14:27:01 updated: 2024/2/17 14:27:01 tags: ASCII编码标准化跨平台字符集兼容性简洁性影响力 在计算机的发展过程中&#xff0c;字符的表示和传输一直是一个重要的问题。为了实现字符的…

python-自动化篇-终极工具-用GUI自动控制键盘和鼠标-pyautogui

文章目录 用GUI自动控制键盘和鼠标pyautogui 模块鼠标——记忆宫殿屏幕位置——移动地图——pyautogui.size鼠标位置——自身定位——pyautogui.position()移动鼠标——pyautogui.moveTo拖动鼠标——滚动鼠标——scroll 键盘按下键盘释放键盘 开始与结束通过注销关闭所有程序 用…