(07)Hive——窗口函数详解

一、 窗口函数知识点

1.1 窗户函数的定义

        窗口函数可以拆分为【窗口+函数】。窗口函数官网指路:

LanguageManual WindowingAndAnalytics - Apache Hive - Apache Software Foundationicon-default.png?t=N7T8https://cwiki.apache.org/confluence/display/Hive/LanguageManual%20WindowingAndAnalytics

  • 窗口:over(),指明函数要处理的数据范围
  • 函数:指明函数计算逻辑

1.2 窗户函数的语法

<窗口函数>window_name  over ( [partition by 字段...]  [order by 字段...]  [窗口子句] )
  • window_name:给窗口指定一个别名。
  • over:用来指定函数执行的窗口范围,如果后面括号中什么都不写,即over() ,意味着窗口包含满足where 条件的所有行,窗口函数基于所有行进行计算。
  • 符号[] 代表:可选项;  | : 代表二选一
  •  partition by 子句: 窗口按照哪些字段进行分组,窗口函数在不同的分组上分别执行。分组间互相独立。
  • order by 子句:每个partition内部按照哪些字段进行排序,如果没有partition ,那就直接按照最大的窗口排序,且默认是按照升序(asc)排列。
  • 窗口子句:显示声明范围(不写窗口子句的话,会有默认值)。常用的窗口子句如下:

1.3 窗口子句范围大小的控制

rows 或 range子句往往来控制窗口的边界范围,其语法如下:

    rows between unbounded preceding and  unbounded following; -- 上无边界到下无边界(一般用于求 总和)rows between unbounded preceding and current row;  --上无边界到当前记录(累计值)rows between 1 preceding and current row; --从上一行到当前行rows between 1 preceding and 1 following; --从上一行到下一行rows between current row and 1 following; --从当前行到下一行

1.4 rows与range的区别

  • rows:rows是真实的行数,也就是我们实际中所说的1,2,3...连续的行数。
  • range:range是逻辑上的行数,需要通过计算才能知道是哪一行。

      ps: over()里面有order by子句,但没有窗口子句时 ,即: <窗口函数> over ( partition by 字段... order by 字段... ),此时窗口子句是有默认值的 -->  rows between unbounded preceding and current row (上无边界到当前行)。  此时窗口函数语法:

 <窗口函数> over ( partition by 字段... order by 字段... )  等价于  <窗口函数> over ( partition by 字段... order by 字段... rows between unbounded preceding and current row)
      需要注意有个特殊情况:当order by 后面跟的某个字段是有重复行的时候, <窗口函数> over ( partition by 字段... order by 字段... )  不写窗口子句的情况下,窗口子句的默认值是:range between unbounded preceding and current row(上无边界到当前相同行的最后一行)。

     因此,遇到order by 后面跟的某个字段出现重复行,且需要计算【上无边界到当前行】,那就需要手动指定窗口子句 rows between unbounded preceding and current row ,偷懒省略窗口子句会出问题~

    总结如下:

1、窗口子句不能单独出现,必须有order by子句时才能出现。
2、当省略窗口子句时:a) 如果存在order by则默认的窗口是unbounded preceding and current row  --当前组的第一行到当前行,即在当前组中,第一行到当前行b) 如果没有order by则默认的窗口是unbounded preceding and unbounded following  --整个组

 口诀:

  • 有partition by 且有order by,窗口范围:分组中第一行到当前行
  • 有partition by 无order by ,窗口范围:整个分组
  • 无partition by 且有order by 窗口范围:整个表中第一行到当前行
  • 无partition by 无order by,窗口范围:整个分组,即over()   

1.5 窗口函数执行顺序

       一般而言:sql 执行顺序

 from ->join ->on ->where ->group by->with (可以在分组后面加上 with rollup,在分组之后对每个组进行全局汇总) ->select 后面的普通字段,聚合函数-> having(having中可以使用select 字段别名) -> distinct -> order by ->limit

 窗口函数的执行顺序窗口函数是作用于select后的结果集。即:select 的结果集作为窗口函数的输入窗口函数的执行结果只是在原有的列中单独添加一列,形成新的列,它不会对已有的行或列做修改。窗口函数简化版的执行顺序:

  窗口函数具体实现原理解析:

select channel, month,sum(amount) as sum,dense_rank() over (partition by channel order by sum(amount) desc) as dr,row_number() over(partition by channel order by sum(amount) desc) as rn
from sales
group by channel,month;

  上述代码执行过程有两个阶段

   step1 : 计算除窗口函数以外的其他运算,如 from 、join 、where、group by、having等。上面的代码的第一阶段:

select channel,month, sum(amount) as sum 
from sales 
group by channel, month;

step2:step1 输出作为 WindowingTableFunction窗口函数的输入,计算对应的窗口函数值。

1.6 条件判断语句嵌套window子句的执行顺序

HiveSQL——条件判断语句嵌套windows子句的应用-CSDN博客文章浏览阅读1.4k次,点赞42次,收藏21次。HiveSQL——条件判断语句嵌套windows子句的应用https://blog.csdn.net/SHWAITME/article/details/136079305?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522170763988016800180626588%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=170763988016800180626588&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-136079305-null-null.nonecase&utm_term=%E6%9D%A1%E4%BB%B6&spm=1018.2226.3001.4450    结论:

  • case when(或 if)语句中嵌套窗口函数时,条件判断语句的执行顺序在窗口函数之后
  • 窗口函数partition by子句中是可以嵌套条件判断语句的 case when(或 if)

1.7 窗口函数中的partition by分组与group by的区别

  • group by 汇总后行数减少,partition by汇总后原表中的行数没变。

  • group by分组后,一组中只返回一个结果。窗口函数中partition by分组,每组每行中都会有一个分析结果。

  • group by分组后,select中的字段必须是group by的字段、sum()等聚合函数或常量;但是窗口函数中的partition by 分组就没有此限制,窗口函数分析的结果可以与表中其他字段并列,其相当于在原表每个分组中新增了一列。

举例:

CREATE TABLE t_order (oid int ,uid int ,otime string,oamount int)
ROW format delimited FIELDS TERMINATED BY ",";
load data local inpath "/opt/module/hive_data/t_order.txt" into table t_order;
with tmp as (selectoid,uid,otime,oamount,date_format(otime, 'yyyy-MM') as dt,---计算rk的目的是为了获取记录中的第一条row_number() over (partition by uid,date_format(otime, 'yyyy-MM') order by otime) rkfrom t_orderorder by uid
)
selectuid,--每个用户一月份的订单数sum(if(dt = '2018-01', 1, 0)) as                 m1_count,--每个用户二月份的订单数sum(if(dt = '2018-02', 1, 0)) as                 m2_count,--每个用户三月份的订单数(当月订单金额超过10元的订单个数)sum(if(dt = '2018-03' and oamount > 10, 1, 0))   m3_count,--当月(3月份)首次下单的金额sum(if(dt = '2018-03' and rk = 1, oamount, 0))   m3_first_amount,-- 开窗函数row_number() over (partition by uid order by  sum(if(dt = '2018-01', 1, 0)))rk
from tmp
group by uid
having m1_count >0 and m2_count=0;

  • 根据HiveSQL的执行顺序得到,窗口函数的执行是在group by,having之后进行,是与select同级别的。如果SQL中既使用了group by又使用了partition by,那么此时partition by的分组是基于group by分组之后的结果集进行的再次分组,即窗口函数分析的数据范围也是基于group by后的数据。

  • 窗口中的partition by分组后,并没有去重功能,而group by具有去重功能

二、窗口函数运用案例

聚合窗口函数-——聚合开窗求累积汇总值

HiveSQL题——聚合函数(sum/count/max/min/avg)-CSDN博客文章浏览阅读1.1k次,点赞19次,收藏19次。HiveSQL题——聚合函数(sum/count/max/min/avg)https://blog.csdn.net/SHWAITME/article/details/135918264排序窗口函数——排序开窗求topN

HiveSQL题——排序函数(row_number/rank/dense_rank)-CSDN博客文章浏览阅读1.3k次,点赞20次,收藏16次。HiveSQL题——排序函数(row_number/rank/dense_rank)https://blog.csdn.net/SHWAITME/article/details/135909662前后窗口函数

HiveSQL题——前后函数(lag/lead)_sql hive lead-CSDN博客文章浏览阅读1.2k次,点赞23次,收藏21次。HiveSQL题——前后函数(lag/lead)_sql hive leadhttps://blog.csdn.net/SHWAITME/article/details/135902998注:参考文章:

窗口函数应用之移动范围计算【详细剖析窗口函数】(HiveSql面试题4详解)-CSDN博客文章浏览阅读3.5k次,点赞17次,收藏53次。本文通过案例来引出对窗口函数的认识,总结了窗口函数的用法及使用规律,该案例主要是对窗口函数在移动计算中的应用,类似于滑动窗口,所谓的滑动窗口也就是指每一行对应对应的数据窗口都不同,通过窗口子句类实现移动计算时数据的范围,也就是窗口每次按行滑动时长度大小,但窗口中每一次对应的数据总是在变化。通过本文你可以获得如下知识: (1)窗口函数的使用规则及用法 (2)窗口子句的使用规则 (3)窗口函数的意义 (4)窗口函数在移动计算中的应用_窗口函数应用之移动范围计算【详细剖析窗口函数】https://blog.csdn.net/godlovedaniel/article/details/106542519

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/259134.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

英文论文(sci)解读复现【NO.21】一种基于空间坐标的轻量级目标检测器无人机航空图像的自注意

此前出了目标检测算法改进专栏&#xff0c;但是对于应用于什么场景&#xff0c;需要什么改进方法对应与自己的应用场景有效果&#xff0c;并且多少改进点能发什么水平的文章&#xff0c;为解决大家的困惑&#xff0c;此系列文章旨在给大家解读发表高水平学术期刊中的 SCI论文&a…

红队笔记Day3-->隧道上线不出网机器

昨天讲了通过代理的形式&#xff08;端口转发&#xff09;实现了上线不出网的机器&#xff0c;那么今天就来讲一下如何通过隧道上线不出网机器 目录 1.网络拓扑 2.开始做隧道&#xff1f;No&#xff01;&#xff01;&#xff01; 3.icmp隧道 4.HTTP隧道 5.SSH隧道 1.什么…

探索未来科技前沿:深度学习的进展与应用

深度学习的进展 摘要&#xff1a;深度学习作为人工智能领域的重要分支&#xff0c;近年来取得了巨大的进展&#xff0c;并在各个领域展现出惊人的应用潜力。本文将介绍深度学习的发展历程、技术原理以及在图像识别、自然语言处理等领域的应用&#xff0c;展望深度学习在未来的…

RunnerGo:UI自动化测试神器!

UI自动化测试已经成为现代软件开发过程中不可或缺的一部分。它能够提供诸多优势&#xff0c;包括提高测试效率、减少人力成本、提升软件质量等。同时&#xff0c;可视化工具为UI自动化测试带来了更多便利和灵活性。RunnerGo近期上线脚本录制器&#xff0c;根据你的测试操作直接…

React 更改程序入口点(index.js文件位置变更)

食用前提示&#xff1a;本文基于已经快速配置好的React环境而作&#xff0c;配置React环境详见拙作&#xff1a;React环境配置-CSDN博客~ 一、了解默认入口点 使用create-react-app快速搭建react环境后&#xff0c;npm start启动程序的默认入口点为/src/index(即src目录下的ind…

【Prometheus】组件介绍-工作流程-部署模式-数据类型-监控

基于Prometheus和K8S构建智能化告警系统 一、Prometheus简介二、Prometheus特点于样本2.1、特点2.2、样本 三、Prometheus组件介绍四、Prometheus工作流程五、Prometheus的几种部署模式5.1、基本高可用模式5.2、基本高可用远程存储5.3、基本高可用远程存储联邦集群 六、Prometh…

ESP32工程中CMake使用及加入第三方SDK库文件

1、ESP32工程结构 本文中使用的是乐鑫官方推出的ESP-IDF v5.1对ESP32S3设备开发&#xff0c;并非是Arduino、Micro-python等第三方工具开发。在ESP-IDF框架中&#xff0c;乐鑫官方已经将CMake 和 Ninja 编译构建工具集成到了ESP-IDF中。 ESP-IDF 即乐鑫物联网开发框架&#xff…

卷积神经网络的基本结构

卷积神经网络的基本结构 与传统的全连接神经网络一样&#xff0c;卷积神经网络依然是一个层级网络&#xff0c;只不过层的功能和形式发生了变化。 典型的CNN结构包括&#xff1a; 数据输入层&#xff08;Input Layer&#xff09;卷积层&#xff08;Convolutional Layer&#x…

第11章 GUI

11.1 Swing概述 Swing是Java语言开发图形化界面的一个工具包。它以抽象窗口工具包&#xff08;AWT&#xff09;为基础&#xff0c;使跨平台应用程序可以使用可插拔的外观风格。Swing拥有丰富的库和组件&#xff0c;使用非常灵活&#xff0c;开发人员只用很少的代码就可以创建出…

力扣OJ题——旋转数组

题目&#xff1a;189.旋转数组 给定一个整数数组 nums&#xff0c;将数组中的元素向右轮转 k 个位置&#xff0c;其中 k 是非负数 思路一&#xff1a; 1.每次挪动旋转1位&#xff08;用tmp将最后一位存起来&#xff0c;其余所有数据向后移&#xff0c;然后将tmp放在第一个位…

Python编程中的异常处理

什么是异常&#xff1f; 程序错误&#xff08;errors&#xff09;有时也被称为程序异常&#xff08;exceptions&#xff09;&#xff0c;这是每个编程人员都会经常遇到的问题。在过去&#xff0c;当遇到这类情况时&#xff0c;程序会终止执行并显示错误信息&#xff0c;通常是…

Qt:Qt3个窗口类的区别、VS与QT项目转换

一、Qt3个窗口类的区别 QMainWindow&#xff1a;包含菜单栏、工具栏、状态栏 QWidget&#xff1a;普通的一个窗口&#xff0c;什么也不包括 QDialog&#xff1a;对话框&#xff0c;常用来做登录窗口、弹出窗口&#xff08;例如设置页面&#xff09; QDialog实现简易登录界面…

力扣经典题:环形链表的检测与返回

1.值得背的题 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ struct ListNode *detectCycle(struct ListNode *head) {struct ListNode*fasthead;struct ListNode*slowhead;while(fast!NULL&&fast->…

LCR 127. 跳跃训练【简单】

LCR 127. 跳跃训练 题目描述&#xff1a; 今天的有氧运动训练内容是在一个长条形的平台上跳跃。平台有 num 个小格子&#xff0c;每次可以选择跳 一个格子 或者 两个格子。请返回在训练过程中&#xff0c;学员们共有多少种不同的跳跃方式。 结果可能过大&#xff0c;因此结果…

spring boot自动装配

第一步需要在pom.xml文件指定需要导入的坐标 要是没有自动提示需要检查maven有没有 实现代码 /*springboot第三方自动配置实现方法 * 什么是自动配置 自动配置就是springboot启动自动加载的类不需要在手动的控制反转自动的加入bean中 * * *//*第一种方案包扫描 不推荐因为繁琐…

The Captainz NFT 概览与数据分析

作者&#xff1a;stellafootprint.network 编译&#xff1a;cicifootprint.network 数据源&#xff1a;The Captainz NFT Collection Dashboard The Captainz 是 Memeland 的旗舰系列&#xff0c;由 9,999 个实用性极强的 PFP 组成。持有者在 Memeland 宇宙中展开了一场神…

[word] word参考文献怎么对齐 #学习方法#微信#笔记

word参考文献怎么对齐 word参考文献怎么对齐&#xff1f; 未对齐的参考文献如下 全部选中参考文献内容 选中段落快捷窗口显示/隐藏编辑标记快捷方式和标号快捷方式中左对齐 选中之后参考文献又自动加了标号 把之前的角标和文字之间全部删除 完成图

【Java多线程案例】实现阻塞队列

1. 阻塞队列简介 1.1 阻塞队列概念 阻塞队列&#xff1a;是一种特殊的队列&#xff0c;具有队列"先进先出"的特性&#xff0c;同时相较于普通队列&#xff0c;阻塞队列是线程安全的&#xff0c;并且带有阻塞功能&#xff0c;表现形式如下&#xff1a; 当队列满时&…

MySQL数据库⑪_C/C++连接MySQL_发送请求

目录 1. 下载库文件 2. 使用库 3. 链接MySQL函数 4. C/C链接示例 5. 发送SQL请求 6. 获取查询结果 本篇完。 1. 下载库文件 要使用C/C连接MySQL&#xff0c;需要使用MySQL官网提供的库。 进入MySQL官网选择适合自己平台的mysql connect库&#xff0c;然后点击下载就行…

Codeforces Round 926 (Div. 2) C. Sasha and the Casino (Java)

Codeforces Round 926 (Div. 2) CC. Sasha and the Casino (Java) 比赛链接&#xff1a;Codeforces Round 926 (Div. 2) C题传送门&#xff1a;C. Sasha and the Casino 题目&#xff1a;C. Sasha and the Casino **Example ** input 2 1 7 2 1 1 2 3 15 3 3 6 4 4 5 5 4 7…