Opencv实战(1)读取与图像操作

Opencv

文章目录

  • Opencv
    • 一、读取图片
      • 1.imshow
      • 2.namedWindow
      • 3.imshow
      • 4.效果图
    • 二、像素操作
      • (1).访问像素
        • 1. at()
        • 2.Mat_
      • (2).遍历像素
        • 1.指针遍历
        • 2.迭代器遍历
      • (3).threshold
      • (4).通道分离
        • 1.split
        • 2.merge
      • (5)Gamma矫正
    • 三、深浅拷贝

一、读取图片

1.imshow

Mat imread(const string& filename, intflags=1 );flags:
enum
{
/* 8bit, color or not */CV_LOAD_IMAGE_UNCHANGED  =-1,
/* 8bit, gray */CV_LOAD_IMAGE_GRAYSCALE  =0,
/* ?, color */CV_LOAD_IMAGE_COLOR      =1,
/* any depth, ? */CV_LOAD_IMAGE_ANYDEPTH   =2,
/* ?, any color */CV_LOAD_IMAGE_ANYCOLOR   =4
};Mat image0=imread("dota.jpg",CV_LOAD_IMAGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR);//载入最真实的图像
Mat image1=imread("dota.jpg",0);//载入灰度图
Mat image2=imread("dota.jpg",199);//载入3通道的彩色图像
Mat logo=imread("dota_logo.jpg");//载入3通道的彩色图像
  • CV_LOAD_IMAGE_UNCHANGED,这个标识在新版本中被废置了,忽略。
  • CV_LOAD_IMAGE_ANYDEPTH- 如果取这个标识的话,若载入的图像的深度为16位或者32位,就返回对应深度的图像,否则,就转换为8位图像再返回。
  • CV_LOAD_IMAGE_COLOR- 如果取这个标识的话,总是转换图像到彩色一体
  • CV_LOAD_IMAGE_GRAYSCALE- 如果取这个标识的话,始终将图像转换成灰度

  • flags >0返回一个3通道的彩色图像。
  • flags =0返回灰度图像。
  • flags <0返回包含Alpha通道的加载的图像。

2.namedWindow

void namedWindow(const string& winname,int flags=WINDOW_AUTOSIZE ); 
  • WINDOW_NORMAL设置了这个值,用户便可以改变窗口的大小(没有限制)
  • WINDOW_AUTOSIZE如果设置了这个值,窗口大小会自动调整以适应所显示的图像,并且不能手动改变窗口大小。
  • WINDOW_OPENGL 如果设置了这个值的话,窗口创建的时候便会支持OpenGL。

3.imshow

void imshow(const string& winname, InputArray mat);

4.效果图

c++

python

二、像素操作

(1).访问像素

1. at()
image.at<uchar>(j,i)= value;  //单通道
image.at<cv::Vec3b>(j,i)[channel]= value;  //三通道
image.at<cv::Vec3b>(j,i) = cv::Vec3b(a,b,c);
2.Mat_
cv::Mat_<uchar> image(image1);
image(20,30) = value;

(2).遍历像素

1.指针遍历
uchar *data = image.ptr<uchar>(i);  //ptr()返回行的地址
for (int i = 0; i < height; i++) {cv::Vec3b* row = image.ptr<cv::Vec3b>(i);for (int j = 0; j < width; j++) {cv::Vec3b& pixel = row[j];//Vec3b&直接操作图像中的像素值,而不需要创建新的对象std::cout << "Pixel at (" << i << "," << j << "): "<< "B=" << (int)pixel[0] << " "<< "G=" << (int)pixel[1] << " "<< "R=" << (int)pixel[2] << std::endl;}
}
2.迭代器遍历
cv::MatIterator_ <cv::Vec3b> it;
或者
cv::Mat_<cv::Vec3b>::iterator it;
cv::MatIterator_<cv::Vec3b> it, end;
for (it = image.begin<cv::Vec3b>(), end = image.end<cv::Vec3b>(); it != end; ++it) {cv::Vec3b& pixel = *it;pixel[0] = 255; pixel[1] = 0; pixel[2] = 0; 
}

python

c++

(3).threshold

double cv::threshold(src, OutputArray, thresh, maxval, type)

在这里插入图片描述

c++:

在这里插入图片描述

python:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(4).通道分离

1.split
C++: void split(const Mat& src, Mat*mvbegin);
C++: void split(InputArray m,OutputArrayOfArrays mv);
2.merge
C++: void merge(const Mat* mv, size_tcount, OutputArray dst)
C++: void merge(InputArrayOfArrays mv,OutputArray dst)

c++
在这里插入图片描述

python

在这里插入图片描述

(5)Gamma矫正

Gamma校正是对输入图像灰度值进行的非线性操作,使输出图像灰度值与输入图像灰度值呈指数关系。Gamma矫正用于调整图像的亮度和对比度。Gamma矫正可以改变图像的灰度值分布,使图像在显示时看起来更加自然和逼真。通常情况下,人眼对亮度的感知是非线性的,因此使用Gamma矫正可以更好地模拟人眼的感知特性。
V o u t = A V i n γ V_{out}=AV_{in}^\gamma Vout=AVinγ
γ的值决定了输入图像和输出图像之间的灰度映射方式,即决定了是增强低灰度值区域还是增高灰度值区域。
γ>1时,图像的高灰度区域对比度得到增强,直观效果是一幅偏亮的图变暗了下来。
γ<1时,图像的低灰度区域对比度得到增强,直观效果是一幅偏暗的图变亮了起来。

python

在这里插入图片描述

c++

在这里插入图片描述

三、深浅拷贝

浅拷贝是指当图像之间进行赋值时,图像数据并未发生复制,而是两个对象都指向同一块内存块。

深拷贝是指新创建的图像拥有原始图像的崭新拷贝

c++

在这里插入图片描述

python

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/259815.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于Django的中间件使用说明。

目录 1.中间件2. 为什么要中间件&#xff1f;3. 具体使用中间件3.1 中间件所在的位置&#xff1a;在django的settings.py里面的MIDDLEWARE。3.2 中间件的创建3.3 中间件的使用 4. 展示成果 1.中间件 中间件的大概解释&#xff1a;在浏览器在请求服务器的时候&#xff0c;首先要…

腾讯云4核8G12M服务器支持多少人在线?

4核8G服务器支持多少人同时在线访问&#xff1f;阿腾云的4核8G服务器可以支持20个访客同时访问&#xff0c;关于4核8G服务器承载量并发数qps计算测评&#xff0c;云服务器上运行程序效率不同支持人数在线人数不同&#xff0c;公网带宽也是影响4核8G服务器并发数的一大因素&…

基于SpringBoot的高校竞赛管理系统

基于SpringBoot的高校竞赛管理系统的设计与实现~ 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringBootMyBatis工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 主页 个人中心 管理员界面 老师界面 摘要 高校竞赛管理系统是为了有效管理学校…

Open CASCADE学习|曲线向曲面投影

在三维空间中&#xff0c;将曲线向曲面投影通常涉及复杂的几何计算。这个过程可以通过多种方法实现&#xff0c;但最常见的是使用数学和几何库&#xff0c;如OpenCASCADE&#xff0c;来处理这些计算。 在OpenCASCADE中&#xff0c;投影曲线到曲面通常涉及以下步骤&#xff1a;…

数据库所在服务器磁盘满了怎么办?

大家好&#xff0c;我是G探险者。 给大家拜个晚年哈&#xff0c;节后上班第一天&#xff0c;打开电脑&#xff0c;发现数据库服务器连不上了。 幸亏&#xff0c;节后第一天上班的人不太多&#xff0c;领导还没来&#xff0c;我一番鼓捣解决了这个问题。 所以做个总结&#xff0…

项目02《游戏-14-开发》Unity3D

基于 项目02《游戏-13-开发》Unity3D &#xff0c; 任务&#xff1a;战斗系统之击败怪物与怪物UI血条信息 using UnityEngine; public abstract class Living : MonoBehaviour{ protected float hp; protected float attack; protected float define; …

为什么有的代理IP速度比较慢?

“为什么有的IP代理速度比较慢&#xff1f;”随着数字化时代的不断发展&#xff0c;代理服务成为了许多网络操作的关键环节。然而&#xff0c;有时我们可能会遇到IP代理速度慢的问题&#xff0c;这可能会对我们的网络操作产生影响。让我们一起揭开这个谜团&#xff0c;探寻其中…

【JavaScript】面试手写题精讲之数组(下)

引入 这章主要讲的是数组的排序篇&#xff0c;我们知道面试的时候&#xff0c;数组的排序是经常出现的题目。所以这块还是有必要进行一下讲解的。笔者观察了下前端这块的常用算法排序题&#xff0c;大概可以分为如下 冒泡排–> 稳定排序插入排序–> 稳定排序选择排序–…

第五次作业:LMDeploy 的量化和部署

参考文档&#xff1a;https://github.com/InternLM/tutorial/blob/main/lmdeploy/lmdeploy.md 基础作业&#xff1a; 使用 LMDeploy 以本地对话、网页Gradio、API服务中的一种方式部署 InternLM-Chat-7B 模型&#xff0c;生成 300 字的小故事&#xff08;需截图&#xff09; …

MAC电脑系统清理空间免费版软件CleanMyMac X2024

大家好&#xff0c;我是那个总是被苹果电脑“内存已满”提示搞得焦头烂额的专业博主。如果你也像我一样&#xff0c;在使用Mac时经常遭遇卡顿、慢吞吞的情况&#xff0c;那么今天的Mac清理空间妙招分享绝对适合你&#xff01; CleanMyMac X全新版下载如下: https://wm.makedi…

【HTML】SVG实现炫酷的描边动画

前沿 今天闲来无事&#xff0c;看到Antfu大佬的个性签名&#xff0c;觉得还是非常炫酷的&#xff0c;于是也想要搞一个自己的个性签名用来装饰自己的门面&#xff0c;不过由于手写的签名太丑了&#xff0c;遂放弃。于是尝试理解原理&#xff0c;深入研究此等密法&#xff0c;终…

基于Springboot的新能源充电系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的新能源充电系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&a…

【开源】基于JAVA+Vue+SpringBoot的就医保险管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 科室档案模块2.2 医生档案模块2.3 预约挂号模块2.4 我的挂号模块 三、系统展示四、核心代码4.1 用户查询全部医生4.2 新增医生4.3 查询科室4.4 新增号源4.5 预约号源 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVue…

ZigBee学习——基于AF的数据通信

文章目录 一、简单描述符1.1 简单介绍1.2 简单描述结构体介绍1.3 结构体中的簇1.4 应用场景 二、AF通信原理2.1 通信过程2.2 端点号分类2.3 通信方式2.4 注册简单描述符 三、数据发送API简介3.1 AF层数据发送API3.2 基于AF层封装的通信API3.2.1 点对点通信API3.2.2 广播通信API…

Linux------环境变量

目录 前言 一、环境变量 二、添加PATH环境变量 三、HOME环境变量 四、查看所有环境变量 1.指令获取 2.代码获取 2.1 getenv 2.2main函数的第三个参数 2.3 全局变量environ 五、环境变量存放地点 六、添加自命名环境变量 七、系统环境变量具有全局属性 八、环境变…

Shiro-05-5 分钟入门 shiro 安全框架实战笔记

序言 大家好&#xff0c;我是老马。 前面我们学习了 web 安全之 Spring Security 入门教程 这次我们来一起学习下另一款 java 安全框架 shiro。 什么是Apache Shiro&#xff1f; Apache Shiro是一个功能强大且易于使用的Java安全框架&#xff0c;它为开发人员提供了一种直…

区块链技术和Hyperledger Fabric介绍

1 区块链介绍 1.1 区块链技术形成 1.1.1 起源 在比特币诞生之时&#xff0c;技术专家们开始研究比特币的底层技术&#xff0c;并抽象提取出来&#xff0c;形成区块链技术&#xff0c;或者称分布式账本技术。 1.1.2 定义 简称BT&#xff08;Blockchain technology&#xff…

8 款顶级开源漏洞扫描工具推荐

1.OpenVAS OpenVAS漏洞扫描器是一种漏洞分析工具&#xff0c;由于其全面的特性&#xff0c;可以使用它来扫描服务器和网络设备。这些扫描器将通过扫描现有设施中的开放端口、错误配置和漏洞来查找IP地址并检查任何开放服务。扫描完成后&#xff0c;将自动生成报告并以电子邮件形…

基于springboot的鞋类商品购物商城系统

文章目录 目录 文章目录 前言 一、功能设计 二、功能实现 2.1 后台功能 2.1.1 管理员登录界面 2.1.2 系统首页 2.1.3 会员管理 2.1.4 栏目管理 2.1.5 商品管理 2.1.6 评价管理 2.1.7 订单管理 2.2 前台功能 2.2.1 新用户注册登录 2.2.2 首页 2.2.3 商品分类 2.2.4 地址管理 2.2…

(AtCoder Beginner Contest 341)(A - D)

比赛地址 : Tasks - Toyota Programming Contest 2024#2&#xff08;AtCoder Beginner Contest 341&#xff09; A . Print 341 模拟就好了 &#xff0c; 先放一个 1 , 然后放 n 个 01 ; #include<bits/stdc.h> #define IOS ios::sync_with_stdio(0);cin.tie(0);cout…