遥感影像纹理特征是描述影像中像素间空间关系的统计特征,常用于地物分类、目标识别和变化检测等遥感应用中。常见的纹理特征计算方式包括灰度共生矩阵(GLCM)、灰度差异矩阵(GLDM)、灰度不均匀性矩阵(GLRLM)等。这些方法通过对像素灰度值的统计分析,揭示了影像中像素间的空间分布规律,从而提取出纹理特征。
常用的纹理特征包括
1. 对比度(Contrast): 描述图像中灰度级之间的对比程度。
2. 同质性(Homogeneity): 描述图像中灰度级分布的均匀程度。
3. 熵(Entropy): 描述图像中灰度级分布的不确定性。
4. 方差(Variance): 描述图像中灰度级的离散程度。
5. 相关性(Correlation): 描述图像中像素间的灰度值相关程度。
6. 能量(Energy): 是灰度共生矩阵各元素值的平方和。
7. 均值(Mean): 描述图像中每个灰度级出现的平均频率。
8. 不相似度(Dissimilarity): 描述图像中不同灰度级之间的差异程度。
这些纹理特征可以通过GLCM等方法计算得到,用于描述遥感影像的纹理信息,对于遥感影像的分类和分析具有重要意义。
在ENVI中可以直接使用工具箱的工具直接计算得到输出影像
此外也可以使用python的skimage.feature库,这个库的greycoprops函数只有contrast、dissimilarity、homogeneity、ASM、energy和correlation这几个特征没有均值、方差和熵。因此下面对这个库的原函数进行修正,添加了方差等计算的greycoprops函数
def greycoprops(P, prop='contrast'):"""Calculate texture properties of a GLCM.Compute a feature of a grey level co-occurrence matrix to serve asa compact summary of the matrix. The properties are computed asfollows:- 'contrast': :math:`\\sum_{i,j=0}^{levels-1} P_{i,j}(i-j)^2`- 'dissimilarity': :math:`\\sum_{i,j=0}^{levels-1}P_{i,j}|i-j|`- 'homogeneity': :math:`\\sum_{i,j=0}^{levels-1}\\frac{P_{i,j}}{1+(i-j)^2}`- 'ASM': :math:`\\sum_{i,j=0}^{levels-1} P_{i,j}^2`- 'energy': :math:`\\sqrt{ASM}`- 'correlation':.. math:: \\sum_{i,j=0}^{levels-1} P_{i,j}\\left[\\frac{(i-\\mu_i) \\(j-\\mu_j)}{\\sqrt{(\\sigma_i^2)(\\sigma_j^2)}}\\right]Each GLCM is normalized to have a sum of 1 before the computation of textureproperties.Parameters----------P : ndarrayInput array. `P` is the grey-level co-occurrence histogramfor which to compute the specified property. The value`P[i,j,d,theta]` is the number of times that grey-level joccurs at a distance d and at an angle theta fromgrey-level i.prop : {'contrast', 'dissimilarity', 'homogeneity', 'energy', \'correlation', 'ASM'}, optionalThe property of the GLCM to compute. The default is 'contrast'.Returns-------results : 2-D ndarray2-dimensional array. `results[d, a]` is the property 'prop' forthe d'th distance and the a'th angle.References----------.. [1] The GLCM Tutorial Home Page,http://www.fp.ucalgary.ca/mhallbey/tutorial.htmExamples--------Compute the contrast for GLCMs with distances [1, 2] and angles[0 degrees, 90 degrees]>>> image = np.array([[0, 0, 1, 1],... [0, 0, 1, 1],... [0, 2, 2, 2],... [2, 2, 3, 3]], dtype=np.uint8)>>> g = greycomatrix(image, [1, 2], [0, np.pi/2], levels=4,... normed=True, symmetric=True)>>> contrast = greycoprops(g, 'contrast')>>> contrastarray([[0.58333333, 1. ],[1.25 , 2.75 ]])"""check_nD(P, 4, 'P')(num_level, num_level2, num_dist, num_angle) = P.shapeif num_level != num_level2:raise ValueError('num_level and num_level2 must be equal.')if num_dist <= 0:raise ValueError('num_dist must be positive.')if num_angle <= 0:raise ValueError('num_angle must be positive.')# normalize each GLCMP = P.astype(np.float32)glcm_sums = np.apply_over_axes(np.sum, P, axes=(0, 1))glcm_sums[glcm_sums == 0] = 1P /= glcm_sums# create weights for specified propertyI, J = np.ogrid[0:num_level, 0:num_level]if prop == 'contrast':weights = (I - J) ** 2elif prop == 'dissimilarity':weights = np.abs(I - J)elif prop == 'homogeneity':weights = 1. / (1. + (I - J) ** 2)elif prop in ['ASM', 'energy', 'correlation', 'entropy', 'mean', 'variance']:passelse:raise ValueError('%s is an invalid property ?' % (prop))# compute property for each GLCMif prop == 'energy':asm = np.apply_over_axes(np.sum, (P ** 2), axes=(0, 1))[0, 0]results = np.sqrt(asm)elif prop == 'ASM':results = np.apply_over_axes(np.sum, (P ** 2), axes=(0, 1))[0, 0]elif prop == 'entropy':results = np.apply_over_axes(np.sum, -P * np.log10(P+0.00001), axes=(0, 1))[0, 0]elif prop == 'correlation':results = np.zeros((num_dist, num_angle), dtype=np.float64)I = np.array(range(num_level)).reshape((num_level, 1, 1, 1))J = np.array(range(num_level)).reshape((1, num_level, 1, 1))diff_i = I - np.apply_over_axes(np.sum, (I * P), axes=(0, 1))[0, 0]diff_j = J - np.apply_over_axes(np.sum, (J * P), axes=(0, 1))[0, 0]std_i = np.sqrt(np.apply_over_axes(np.sum, (P * (diff_i) ** 2),axes=(0, 1))[0, 0])std_j = np.sqrt(np.apply_over_axes(np.sum, (P * (diff_j) ** 2),axes=(0, 1))[0, 0])cov = np.apply_over_axes(np.sum, (P * (diff_i * diff_j)),axes=(0, 1))[0, 0]# handle the special case of standard deviations near zeromask_0 = std_i < 1e-15mask_0[std_j < 1e-15] = Trueresults[mask_0] = 1# handle the standard casemask_1 = mask_0 == Falseresults[mask_1] = cov[mask_1] / (std_i[mask_1] * std_j[mask_1])elif prop in ['contrast', 'dissimilarity', 'homogeneity']:weights = weights.reshape((num_level, num_level, 1, 1))results = np.apply_over_axes(np.sum, (P * weights), axes=(0, 1))[0, 0]elif prop == 'mean':I = np.array(range(num_level)).reshape((num_level, 1, 1, 1))results = np.apply_over_axes(np.sum, (P * I), axes=(0, 1))[0, 0]elif prop == 'variance':I = np.array(range(num_level)).reshape((num_level, 1, 1, 1))mean = np.apply_over_axes(np.sum, (P * I), axes=(0, 1))[0, 0]results = np.apply_over_axes(np.sum, (P * (I - mean) ** 2), axes=(0, 1))[0, 0]return results
具体影像分析时还需要考虑灰色关联矩阵计算的角度、步长、灰度级数和窗口大小。以一张多光谱影像为例,相关性使用了greycoprops,其他的特征使用公式计算,实际上导入上面的新greycoprops函数后其他特征都可以用函数计算,具体代码如下,输出结果为多光谱各个波段的纹理特征的多通道影像:
from osgeo import gdal, osr
import os
import numpy as np
import cv2
from skimage import data
from skimage.feature import greycopropsdef export_tif(out_tif_name, var_lat, var_lon, NDVI, bandname=None):# 判断数组维度if len(NDVI.shape) > 2:im_bands, im_height, im_width = NDVI.shapeelse:im_bands, (im_height, im_width) = 1, NDVI.shapeLonMin, LatMax, LonMax, LatMin = [min(var_lon), max(var_lat), max(var_lon), min(var_lat)]# 分辨率计算Lon_Res = (LonMax - LonMin) / (float(im_width) - 1)Lat_Res = (LatMax - LatMin) / (float(im_height) - 1)driver = gdal.GetDriverByName('GTiff')out_tif = driver.Create(out_tif_name, im_width, im_height, im_bands, gdal.GDT_Float32) # 创建框架# 设置影像的显示范围# Lat_Res一定要是-的geotransform = (LonMin, Lon_Res, 0, LatMax, 0, -Lat_Res)out_tif.SetGeoTransform(geotransform)# 获取地理坐标系统信息,用于选取需要的地理坐标系统srs = osr.SpatialReference()srs.ImportFromEPSG(4326) # 定义输出的坐标系为"WGS 84",AUTHORITY["EPSG","4326"]out_tif.SetProjection(srs.ExportToWkt()) # 给新建图层赋予投影信息# 数据写出if im_bands == 1:out_tif.GetRasterBand(1).WriteArray(NDVI)else:for bands in range(im_bands):# 为每个波段设置名称if bandname is not None:out_tif.GetRasterBand(bands + 1).SetDescription(bandname[bands])out_tif.GetRasterBand(bands + 1).WriteArray(NDVI[bands])# 生成 ENVI HDR 文件hdr_file = out_tif_name.replace('.tif', '.hdr')with open(hdr_file, 'w') as f:f.write('ENVI\n')f.write('description = {Generated by export_tif}\n')f.write('samples = {}\n'.format(im_width))f.write('lines = {}\n'.format(im_height))f.write('bands = {}\n'.format(im_bands))f.write('header offset = 0\n')f.write('file type = ENVI Standard\n')f.write('data type = {}\n'.format(gdal.GetDataTypeName(out_tif.GetRasterBand(1).DataType)))f.write('interleave = bsq\n')f.write('sensor type = Unknown\n')f.write('byte order = 0\n')band_names_str = ', '.join(str(band) for band in bandname)f.write('band names = {%s}\n'%(band_names_str))del out_tifdef fast_glcm(img, vmin=0, vmax=255, levels=8, kernel_size=5, distance=1.0, angle=0.0):'''Parameters----------img: array_like, shape=(h,w), dtype=np.uint8input imagevmin: intminimum value of input imagevmax: intmaximum value of input imagelevels: intnumber of grey-levels of GLCMkernel_size: intPatch size to calculate GLCM around the target pixeldistance: floatpixel pair distance offsets [pixel] (1.0, 2.0, and etc.)angle: floatpixel pair angles [degree] (0.0, 30.0, 45.0, 90.0, and etc.)Returns-------Grey-level co-occurrence matrix for each pixelsshape = (levels, levels, h, w)'''mi, ma = vmin, vmaxks = kernel_sizeh,w = img.shape# digitizebins = np.linspace(mi, ma+1, levels+1)gl1 = np.digitize(img, bins) - 1# make shifted imagedx = distance*np.cos(np.deg2rad(angle))dy = distance*np.sin(np.deg2rad(-angle))mat = np.array([[1.0,0.0,-dx], [0.0,1.0,-dy]], dtype=np.float32)gl2 = cv2.warpAffine(gl1, mat, (w,h), flags=cv2.INTER_NEAREST,borderMode=cv2.BORDER_REPLICATE)# make glcmglcm = np.zeros((levels, levels, h, w), dtype=np.uint8)for i in range(levels):for j in range(levels):mask = ((gl1==i) & (gl2==j))glcm[i,j, mask] = 1kernel = np.ones((ks, ks), dtype=np.uint8)for i in range(levels):for j in range(levels):glcm[i,j] = cv2.filter2D(glcm[i,j], -1, kernel)# 灰色关联矩阵归一化,之后结果与ENVI相同glcm = glcm.astype(np.float32)glcm_sums = np.apply_over_axes(np.sum, glcm, axes=(0, 1))glcm_sums[glcm_sums == 0] = 1glcm /= glcm_sumsreturn glcmdef fast_glcm_texture(img, vmin=0, vmax=255, levels=8, ks=5, distance=1.0, angle=0.0):'''calc glcm texture'''h,w = img.shapeglcm = fast_glcm(img, vmin, vmax, levels, ks, distance, angle)mean = np.zeros((h,w), dtype=np.float32)var = np.zeros((h,w), dtype=np.float32)cont = np.zeros((h,w), dtype=np.float32)diss = np.zeros((h,w), dtype=np.float32)homo = np.zeros((h,w), dtype=np.float32)asm = np.zeros((h,w), dtype=np.float32)ent = np.zeros((h,w), dtype=np.float32)cor = np.zeros((h, w), dtype=np.float32)for i in range(levels):for j in range(levels):mean += glcm[i,j] * ihomo += glcm[i,j] / (1.+(i-j)**2)asm += glcm[i,j]**2cont += glcm[i,j] * (i-j)**2diss += glcm[i,j] * np.abs(i-j)ent -= glcm[i, j] * np.log10(glcm[i, j] + 0.00001)for i in range(levels):for j in range(levels):var += glcm[i, j] * (i - mean)**2greycoprops(glcm, 'correlation') # 上面计算的几个特征均可这样写cor[cor == 1.0] = 0.homo[homo == 1.] = 0asm[asm == 1.] = 0return [mean, var, cont, diss, homo, asm, ent, cor]# 遥感影像
image = r'..\path\to\your\file\image.tif'
# 文件输出路径
out_path = r'..\output\path'
dataset = gdal.Open(image) # 读取数据
adfGeoTransform = dataset.GetGeoTransform()
nXSize = dataset.RasterXSize # 列数
nYSize = dataset.RasterYSize # 行数
im_data = dataset.ReadAsArray(0, 0, nXSize, nYSize) # 读取数据
im_data[im_data==65536] = 0
var_lat = [] # 纬度
var_lon = [] # 经度
for j in range(nYSize):lat = adfGeoTransform[3] + j * adfGeoTransform[5]var_lat.append(lat)
for i in range(nXSize):lon = adfGeoTransform[0] + i * adfGeoTransform[1]var_lon.append(lon)
result = []
band_name=[]
for i, img in enumerate(im_data):img = np.uint8(255.0 * (img - np.min(img))/(np.max(img) - np.min(img))) # normalizationfast_result = fast_glcm_texture(img, vmin=0, vmax=255, levels=32, ks=3, distance=1.0, angle=0.0)result += fast_resultvariable_names = ['mean', 'variance', 'contrast', 'dissimilarity', 'homogeneity', 'ASM', 'entropy', 'correlation']for names in variable_names:band_name.append('band_'+str(i+1)+'_'+names)
name = os.path.splitext(os.path.basename(image))[0]
export_tif(os.path.join(out_path, '%s_TF.tif' % name), var_lat, var_lon, np.array(result), bandname=band_name)
print('over')
总结
目前熵值特征计算结果与ENVI有差异,不过只是数值差异,使用影像打开的结果显示一致,说明只是值的范围差异,不影响分析,其他特征均与ENVI的计算结果一致