探索海洋世界,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建海洋场景下海洋生物检测识别分析系统

前面的博文中,开发实践过海底相关生物检测识别的项目,对于海洋场景下的海洋生物检测则很少有所涉及,这里本文的主要目的就是想要开发构建基于YOLOv5的海洋场景下的海洋生物检测识别系统。

前文相关的开发实践如下,感兴趣的话可以自行移步阅读即可:
《探索海洋世界,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建海洋场景下海洋生物检测识别分析系统》

《探索海洋世界,基于DETR(DEtection TRansformer)模型开发构建海洋场景下海洋生物检测识别分析系统》

首先看下实例效果:

简单看下实例数据情况:

本文是选择的是YOLOv5算法模型来完成本文项目的开发构建。相较于前两代的算法模型,YOLOv5可谓是集大成者,达到了SOTA的水平,下面简单对v3-v5系列模型的演变进行简单介绍总结方便对比分析学习:
【YOLOv3】
YOLOv3(You Only Look Once version 3)是一种基于深度学习的快速目标检测算法,由Joseph Redmon等人于2018年提出。它的核心技术原理和亮点如下:
技术原理:
YOLOv3采用单个神经网络模型来完成目标检测任务。与传统的目标检测方法不同,YOLOv3将目标检测问题转化为一个回归问题,通过卷积神经网络输出图像中存在的目标的边界框坐标和类别概率。
YOLOv3使用Darknet-53作为骨干网络,用来提取图像特征。检测头(detection head)负责将提取的特征映射到目标边界框和类别预测。
亮点:
YOLOv3在保持较高的检测精度的同时,能够实现非常快的检测速度。相较于一些基于候选区域的目标检测算法(如Faster R-CNN、SSD等),YOLOv3具有更高的实时性能。
YOLOv3对小目标和密集目标的检测效果较好,同时在大目标的检测精度上也有不错的表现。
YOLOv3具有较好的通用性和适应性,适用于各种目标检测任务,包括车辆检测、行人检测等。
【YOLOv4】
YOLOv4是一种实时目标检测模型,它在速度和准确度上都有显著的提高。相比于其前一代模型YOLOv3,YOLOv4在保持较高的检测精度的同时,还提高了检测速度。这主要得益于其采用的CSPDarknet53网络结构,主要有三个方面的优点:增强CNN的学习能力,使得在轻量化的同时保持准确性;降低计算瓶颈;降低内存成本。YOLOv4的目标检测策略采用的是“分而治之”的策略,将一张图片平均分成7×7个网格,每个网格分别负责预测中心点落在该网格内的目标。这种方法不需要额外再设计一个区域提议网络(RPN),从而减少了训练的负担。然而,尽管YOLOv4在许多方面都表现出色,但它仍然存在一些不足。例如,小目标检测效果较差。此外,当需要在资源受限的设备上部署像YOLOv4这样的大模型时,模型压缩是研究人员重新调整较大模型所需资源消耗的有用工具。
优点:
速度:YOLOv4 保持了 YOLO 算法一贯的实时性,能够在检测速度和精度之间实现良好的平衡。
精度:YOLOv4 采用了 CSPDarknet 和 PANet 两种先进的技术,提高了检测精度,特别是在检测小型物体方面有显著提升。
通用性:YOLOv4 适用于多种任务,如行人检测、车辆检测、人脸检测等,具有较高的通用性。
模块化设计:YOLOv4 中的组件可以方便地更换和扩展,便于进一步优化和适应不同场景。
缺点:
内存占用:YOLOv4 模型参数较多,因此需要较大的内存来存储和运行模型,这对于部分硬件设备来说可能是一个限制因素。
训练成本:YOLOv4 模型需要大量的训练数据和计算资源才能达到理想的性能,这可能导致训练成本较高。
精确度与速度的权衡:虽然 YOLOv4 在速度和精度之间取得了较好的平衡,但在极端情况下,例如检测高速移动的物体或复杂背景下的物体时,性能可能会受到影响。
误检和漏检:由于 YOLOv4 采用单一网络对整个图像进行预测,可能会导致一些误检和漏检现象。

【YOLOv5】
YOLOv5是一种快速、准确的目标检测模型,由Glen Darby于2020年提出。相较于前两代模型,YOLOv5集成了众多的tricks达到了性能的SOTA:
技术原理:
YOLOv5同样采用单个神经网络模型来完成目标检测任务,但采用了新的神经网络架构,融合了领先的轻量级模型设计理念。YOLOv5使用较小的骨干网络和新的检测头设计,以实现更快的推断速度,并在不降低精度的前提下提高目标检测的准确性。
亮点:
YOLOv5在模型结构上进行了改进,引入了更先进的轻量级网络架构,因此在速度和精度上都有所提升。
YOLOv5支持更灵活的模型大小和预训练选项,可以根据任务需求选择不同大小的模型,同时提供丰富的数据增强扩展、模型集成等方法来提高检测精度。YOLOv5通过使用更简洁的代码实现,提高了模型的易用性和可扩展性。

训练数据配置文件如下:

# Dataset
path: ./dataset
train:- images/train
val:- images/test
test:- images/test# Classes
names:0: tortoise1: fish2: coral3: person

实验截止目前,本文将YOLOv5系列五款不同参数量级的模型均进行了开发评测,接下来看下模型详情:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5# Parameters
nc: 4  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 1024]l: [1.00, 1.00, 1024]x: [1.33, 1.25, 1024]# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)]

在实验训练开发阶段,所有的模型均保持完全相同的参数设置,等待训练完成后,来整体进行评测对比分析。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能.F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【loss曲线】

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

从整体实验结果对比来看:n系列的模型效果最差,被其他几款模型拉开了明显的差距,s系列的模型次之,m和l系列的模型性能相近,x系列的模型最优,略高于m和l系列的模型,考虑到计算量的问题,这里我们最终选择使用m系列的模型来作为最终的推理模型。

接下来就以m系列的模型为基准,详细看下结果详情:

【Batch实例】

【数据分布可视化】

【PR曲线】

【训练可视化】

【混淆矩阵】

感兴趣的话都可以自行动手尝试下!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv5s

全系列五个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/260144.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS开发篇—数据管理(分布式数据服务)

分布式数据服务概述 分布式数据服务(Distributed Data Service,DDS) 为应用程序提供不同设备间数据库数据分布式的能力。通过调用分布式数据接口,应用程序将数据保存到分布式数据库中。通过结合帐号、应用和数据库三元组&#xf…

matlab入门,在线编辑,无需安装matab

matlab相关教程做的很完善,除了B站看看教程,官方教程我觉得更加高效。跟着教程一步一步编辑,非常方便。 阅读 MATLAB 官方教程: MATLAB 官方教程提供了从基础到高级的教学内容,内容包括 MATLAB 的基本语法、数据处理…

飞天使-k8s知识点18-kubernetes实操3-pod的生命周期

文章目录 探针的生命周期流程图prestop 探针的生命周期 docker 创建:在创建阶段,你需要选择一个镜像来运行你的应用。这个镜像可以是公开的,如 Docker Hub 上的镜像,也可以是你自己创建的自定义镜像。创建自己的镜像通常需要编写一…

Academic Inquiry|投稿状态分享(ACS,Wiley,RSC,Elsevier,MDPI,Springer Nature出版社)

作为科研人员,我们经常会面临着向学术期刊投稿的问题。一般来说,期刊的投稿状态会在官方网站上进行公示,我们可以通过期刊的官方网站或者投稿系统查询到我们投稿的论文的状态,对于不同的期刊在投稿系统中会有不同的显示。 说明&am…

Linux RabbitMQ 安装及卸载

一、安装 1、前景 RabbitMQ是用Erlang编写的,所以需要先安装Erlang的编译环境 注意 Erlang和RabbitMQ的版本是有一些版本匹配关系的,如果不匹配会导致RabbitMQ无法启动 2、安装Erlang # 下载 wget https://packages.erlang-solutions.com/erlang/r…

前端|Day2:列表、表格、表单(黑马笔记)

Day2:列表、表格、表单 目录 Day2:列表、表格、表单一、列表1.无序列表2.有序列表3. 定义列表 二、表格1.基本使用2. 表格结构标签(了解)3.合并单元格 三、表单1.input 标签2.input 标签占位文本3.单选框4.上传文件5.多选框6.下拉菜单7.文本域8.label 标…

[ansible] playbook运用

一、复习playbook剧本 --- - name: first play for install nginx #设置play的名称gather_facts: false #设置不收集facts信息hosts: webservers:dbservers #指定执行此play的远程主机组remote_user: root #指定执行此play的用…

qt-交通路口仿真

qt-交通路口仿真 一、演示效果二、核心代码三、程序链接 一、演示效果 二、核心代码 #include "generator.h"Generator::Generator(SimulationScene *scene):m_scene(scene),m_mode(VEHICLEMETHOD::GO_THROUGH),m_running_state(false),m_VisionOn(false),m_IsInter…

第四篇【传奇开心果系列】Python文本和语音相互转换库技术点案例示例:pyttsx3自动化脚本经典案例

传奇开心果短博文系列 系列短博文目录Python文本和语音相互转换库技术点案例示例系列 短博文目录前言一、雏形示例代码二、扩展思路介绍三、批量处理文本示例代码四、自定义语音设置示例代码五、结合其他库和API示例代码六、语音交互系统示例代码七、多语言支持示例代码八、添加…

java 宠物医院系统Myeclipse开发mysql数据库web结构jsp编程计算机网页项目

一、源码特点 java 宠物医院系统是一套完善的java web信息管理系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发,数据库为Mysql5.0&…

HarmonyOS4.0系列——08、整合UI常用组件

HarmonyOS4.0 系列——08、UI 组件 Blank Blank 组件在横竖屏占满空余空间效果 // xxx.ets Entry Component struct BlankExample {build() {Column() {Row() {Text(Button).fontSize(18)Blank()Toggle({type: ToggleType.Switch}).margin({top: 14,bottom: 14,left: 6,righ…

CMNet:Contrastive Magnification Network for Micro-Expression Recognition 阅读笔记

AAAI 2023的一篇文章,东南大学几位老师的工作,用于做微表情识别中的运动增强工作, 以下是阅读时记录的笔记。 摘要: However,existing magnification strategies tend to use the features offacial images that include not onl…

AI提示工程实战:从零开始利用提示工程学习应用大语言模型【文末送书-19】

文章目录 背景什么是提示工程?从零开始:准备工作设计提示调用大语言模型 实际应用示例文字创作助手代码生成持续优化与迭代数据隐私与安全性可解释性与透明度总结 AI提示工程实战:从零开始利用提示工程学习应用大语言模型【文末送书-19】⛳粉…

2023年全球软件开发大会(QCon北京站2023)2月:核心内容与学习收获(附大会核心PPT下载)

本次峰会是一个汇集了最新技术趋势、最佳实践和创新思维的盛会。对于从事软件开发和相关领域的专业人士来说,参加这样的大会将有助于他们了解行业动态、提升技能水平、拓展职业视野,并与同行建立联系和合作。 本次峰会包含:AI基础架构、DevO…

从 AGP 4.1.2 到 7.5.1——XmlParser、GPathResult、QName 过时

新年首发, 去年的问题,今年解决~ 问题 & 排查 1: Task failed with an exception. ----------- * What went wrong: Execution failed for task :app:processCommonReleaseManifest. > org.xml.sax.SAXParseException; lineNumber: 1; columnNu…

【求职】搜狗2016 C++笔试题

1.关于重载和多态正确的是? A.如果父类和子类都有相同的方法,参数个数不同,将子类对象赋给父类后,由于子类继承于父类,所以使用父类指针调用父类方法时,实际调用的是子类的方法; B.选项全部都不正确 C.重载和多态在C面向对象编程中经常用到的方法,都只在实现子类…

【C/C++】2024春晚刘谦春晚魔术步骤模拟+暴力破解

在这个特别的除夕夜,我们不仅享受了与家人的温馨团聚,还被电视机前的春节联欢晚会深深吸引。特别是,魔术师刘谦的精彩表演,为我们带来了一场视觉和心灵的盛宴。在我的博客“【C/C】2024春晚刘谦春晚魔术步骤模拟暴力破解”中&…

WPF中样式

WPF中样式&#xff1a;类似于winform中控件的属性 <Grid><!-- Button属性 字体大小 字体颜色 内容 控件宽 高 --><Button FontSize"20" Foreground"Blue" Content"Hello" Width"100" Height"40"/></G…

x86使用内敛汇编实现简单的临界段保护

临界资源保护 实现方法 禁用中断 __attribute__((used)) static inline uint32_t read_eflags (void){uint32_t eflags;ASM_V("pushf\n\tpop %%eax":"a"(eflags));return eflags; } __attribute__((used)) static inline void write_eflags (uint32_t e…

安全架构设计理论与实践

一、考点分布 安全架构概述&#xff08;※※&#xff09;安全模型&#xff08;※※※&#xff09;信息安全整体架构设计网络安全体系架构设计区块链技术&#xff08;※※&#xff09; 二、安全架构概述 被动攻击&#xff1a;收集信息为主&#xff0c;破坏保密性 主动攻击&#…