第2.4章 StarRocks表设计——分区分桶与副本数

目录

一、数据分布

1.1 概述

1.2 数据分布方式

1.2.1 Round-Robin

1.2.2 Range

1.2.3 List

1.2.4 Hash

1.3 StarRocks的数据分布方式

1.3.1 不分区+ Hash分桶

1.3.2 Range分区+Hash分桶

三、分区

3.1 分区概述

3.2 创建分区

3.2.1 手动创建分区

3.2.2 批量创建分区

3.2.3 动态分区

四、分桶

4.1 分桶概述

4.2 设置分桶键

4.2.1 哈希分桶

4.3 确定分桶数量

4.3.1 建表时

4.3.2 建表后

五、建表调优

5.1 数据倾斜

5.2 高并发

5.3 高吞吐

5.4 元数据管理

六、分区分桶及副本之间的关系

该篇文章介绍StarRocks-2.5.4版本的分区分桶及副本相关内容,有误请指出~

一、数据分布

1.1 概述

      建表时,通过设置合理的分区和分桶,使数据均衡分布在不同节点上,查询时能够有效裁剪数据扫描量,最大限度的利用集群的并发性能,从而提升查询性能。

1.2 数据分布方式

      分布式数据库中常见的数据分布方式有:Round-Robin、Range、List 和 Hash。如下图所示:

1.2.1 Round-Robin

        以询的方式把数据逐个放置在相邻节点上。

1.2.2 Range

      按照分区进行数据分区,如下图所示,区间[1-3] 、[4-6]分别对应不同的范围(Range)。

适用场景:数据简单有序,并且通常按照连续日期/数值范围来查询和管理数据,range分区是常用的分区方式。

1.2.3 List

      直接基于离散的各个取值做数据分布,例如性别,省份等数据就满足这种离散的特性(离散:取值是有限的),每个离散值会映射到一个节点上,多个不同的取值可能也映射到相同节点上。适用场景:按照枚举值来查询和管理数据,比如经常按照国家和城市来查询和管理数据,则可以使用该方式,选择分区列为 city

1.2.4 Hash

      通过哈希函数把数据映射到不同节点上。

总结:可以根据具体的业务场景需求组合使用这些数据分布方式,常见的组合方式有 Hash+Hash、Range+Hash、Hash+List。

1.3 StarRocks的数据分布方式

   StarRocks支持两层的数据划分。第一层是Partition分区,支持Range、List或者不分区(不分区代表全表只有一个分区)。第二层是 Bucket分桶(Tablet),StarRocks-2.5.4版本分桶方式只有Hash哈希分桶。StarRocks常见的两种数据分布方式如下:

1.3.1 不分区+ Hash分桶

      概述: 一张表只有一个分区,分区按照分桶键和分桶数量进一步进行数据划分,分桶规则: Hash算法(分桶键)% 分桶数

    建表语句:

#不分区+ Hash分桶,分桶键为site_id
CREATE TABLE site_access(site_id INT DEFAULT '10',city_code SMALLINT,user_name VARCHAR(32) DEFAULT '',pv BIGINT SUM DEFAULT '0'
)
AGGREGATE KEY(site_id, city_code, user_name)
DISTRIBUTED BY HASH(site_id) BUCKETS 10;

1.3.2 Range分区+Hash分桶

      概述:一张表拆分成多个分区,每个分区按照分桶键和分桶数量进一步进行数据划分,分桶规则: Hash算法(分桶键)% 分桶数

     建表语句:

#分区键为partition_no,分桶键为cbhtbm:
create table test.ods_cbht (cbhtbm                string               comment "",fbfbm                 string               comment "",cbfbm                 string               comment "",cbfs                  string               comment "",cbqxq                 datetime             comment "",cbqxz                 datetime             comment "",partition_no          bigint               comment ""
) engine=olap
duplicate key(cbhtbm)
comment ""
partition  by   range(partition_no) (
start("110000")  end ("160000")  every (10000),
start("210000")  end ("240000")  every (10000),
start("310000")  end ("380000")  every (10000),
start("410000")  end ("470000")  every (10000),
start("500000")  end ("550000")  every (10000),
start("610000")  end ("660000")  every (10000),
start("710000")  end ("720000")  every (10000),
start("810000")  end ("830000")  every (10000)
)
distributed by hash(cbhtbm) buckets 8
properties (
"replication_num" = "3",
"in_memory" = "false",
"storage_format" = "default"
);

三、分区

3.1 分区概述

   (1)分区用于将数据划分成不同的区间。分区的主要作用是将一张表按照分区键拆分成不同的管理单元,针对每一个管理单元选择相应的存储策略,比如副本数分桶数冷热策略存储介质等。StarRocks支持在一个集群内使用多种存储介质,将新数据所在分区放在SSD盘上,利用 SSD优秀的随机读写性能来提高查询性能,将旧数据存放在 SATA 盘上,以节省数据存储的成本。   

  (2)选择合理的分区列可以有效的裁剪查询数据时扫描的数据量。业务系统中⼀般会选择根据时间进行分区,以优化大量删除过期数据带来的性能问题,同时也方便冷热数据分级存储。选择分区单位时需要综合考虑数据量、查询特点、数据粒度等因素。

  • 示例 1:表单月数据量很小,可以按月分区,相比于按天分区,可以减少元数据数量,从而减少元数据管理和调度的资源消耗
  • 示例 2:表单月数据量很大,而大部分查询条件精确到天,如果按天分区,可以做有效的分区裁减,减少查询扫描的数据量。
  • 示例 3:数据要求按天过期,可以按天分区。

  (3)StarRocks支持手动创建分区、批量创建分区、动态分区

3.2 创建分区

     选择合理的分区键可以有效的裁剪扫描的数据量,常见的分区键为时间或者区域,目前支持分区键的数据类型为日期和整数类型

3.2.1 手动创建分区

#分区键event_day,类型是DATE
CREATE TABLE site_access(event_day DATE,site_id INT DEFAULT '10',city_code VARCHAR(100),user_name VARCHAR(32) DEFAULT '',pv BIGINT SUM DEFAULT '0'
)
AGGREGATE KEY(event_day, site_id, city_code, user_name)
PARTITION BY RANGE(event_day)
(PARTITION p1 VALUES LESS THAN ("2020-01-31"),PARTITION p2 VALUES LESS THAN ("2020-02-29"),PARTITION p3 VALUES LESS THAN ("2020-03-31")
)
DISTRIBUTED BY HASH(site_id) BUCKETS 10;

3.2.2 批量创建分区

  • 建表时批量创建日期分区

       当分区键为日期类型时,建表时通过 start、end指定批量分区的开始日期和结束日期,every子句指定分区增量值。并且every子句中用 interval关键字表示日期间隔,目前仅支持日期间隔的单位为day、week、month、year。

#如下,批量分区的开始日期为2021-01-01和结束日期为2021-01-04,增量值为一天:
create table site_access (datekey date,site_id int,city_code smallint,user_name varchar(32),pv bigint default '0'
)
engine=olap
duplicate key(datekey, site_id, city_code, user_name)
partition by range (datekey) (start ("2021-01-01") end ("2021-01-04") every (interval 1 day)
)
distributed by hash(site_id) buckets 10
properties ("replication_num" = "3" 
);#则相当于在建表语句中使用如下partition by子句:前闭后开
partition by range (datekey) (partition p20210101 values [('2021-01-01'), ('2021-01-02')),partition p20210102 values [('2021-01-02'), ('2021-01-03')),partition p20210103 values [('2021-01-03'), ('2021-01-04'))
)
  • 建表时批量创建区划分区 

      当分区键为区域类型时,建表时通过 start、end指定批量分区的开始和结束,every子句指定分区增量值

create table test.ods_cbht (cbhtbm                string               comment "",fbfbm                 string               comment "",cbfbm                 string               comment "",cbfs                  string               comment "",cbqxq                 datetime             comment "",cbqxz                 datetime             comment "",partition_no          bigint               comment "") engine=olap
duplicate key(cbhtbm)
comment ""
partition  by   range(partition_no) (
start("110000")  end ("160000")  every (10000),
start("210000")  end ("240000")  every (10000),
start("310000")  end ("380000")  every (10000),
start("410000")  end ("470000")  every (10000),
start("500000")  end ("550000")  every (10000),
start("610000")  end ("660000")  every (10000),
start("710000")  end ("720000")  every (10000),
start("810000")  end ("830000")  every (10000)
)
distributed by hash(cbhtbm) buckets 8
properties (
"replication_num" = "3",
"in_memory" = "false",
"storage_format" = "default"
);

3.2.3 动态分区

    可以按需对新数据动态创建分区,同时 StarRocks 会自动删除过期分区,从而确保数据的实效性,实现对分区的生命周期管理(Time to Life,简称 “TTL”),降低运维管理的成本。详细配置见文章:

动态分区 | StarRocks动态分区功能开启后,您可以按需为新数据动态地创建分区,同时 StarRocks 会⾃动删除过期分区,从而确保数据的时效性。https://docs.starrocks.io/zh/docs/2.5/table_design/dynamic_partitioning/

四、分桶

4.1 分桶概述

      分区按照分桶键和分桶数量进一步进行数据划分,一个分区按分桶方式被分成了多个桶 bucket,每个桶的数据称之为一个Tablet。StarRocks一般采用Hash算法作为分桶算法。在同一分区内,分桶键哈希值相同的数据会划分到同一个Tablet(数据分片),Tablet 以多副本冗余的形式存储,是数据均衡和恢复的最⼩单位,数据导入和查询最终都下沉到所涉及的 Tablet 副本上。ps:建表时,如果使用哈希分桶,则必须指定分桶键。

4.2 设置分桶键

4.2.1 哈希分桶

      对每个分区的数据,StarRocks会根据分桶键和分桶数量进行哈希分桶。哈希分桶中,使用特定的列值作为输入,通过哈希函数计算出一个哈希值,然后将数据根据该哈希值分配到相应的桶中。

 (1)优点

  • 提高查询性能。相同分桶键值的行会被分配到一个分桶中,在查询时能减少扫描数据量。
  • 均匀分布数据。通过选取较高基数(唯一值的数量较多)的列作为分桶键,能更均匀的分布数据到每一个分桶中。

 (2)如何选择分桶键

  • 如果查询比较复杂,则建议选择高基数的列为分桶键,保证数据在各个分桶中尽量均衡,提高集群资源利用率。
  • 如果查询比较简单,则建议选择经常作为查询条件的列为分桶键,提高查询效率。

  (3)注意事项

  • 建表时,如果使用哈希分桶,则必须指定分桶键。
  • 组成分桶键的列仅支持整型、decimal(数值型)、date/datetime(日期型)、char/varchar/string (字符串)数据类型。

  (4)案例

     案例一:假设site_id为高基数列,site_access表采用site_id作为分桶键

#假设site_id为高基数列,site_access表采用site_id作为分桶键
create table site_access(event_day date,site_id int default '10',city_code varchar(100),user_name varchar(32) default '',pv bigint sum default '0'
)
aggregate key(event_day, site_id, city_code, user_name)
partition by range(event_day) (partition p1 values less than ("2020-01-31"),partition p2 values less than ("2020-02-29"),partition p3 values less than ("2020-03-31")
)
distributed by hash(site_id);

    案例二:如果site_id分布十分不均匀,那么采用上述分桶方式会造成数据分布出现严重的倾斜,进而导致系统局部的性能瓶颈。需要调整分桶的字段,以将数据打散,避免性能问题。 例如,可以采用site_id、city_code组合作为分桶键,将数据划分得更加均匀。

# 如果site_id分布十分不均匀,那么采用上述分桶方式会造成数据分布出现严重的倾斜,进而导致系统局部的性能瓶颈。需要调整分桶的字段,以将数据打散,避免性能问题。
# 例如,可以采用site_id、city_code组合作为分桶键,将数据划分得更加均匀。
create table site_access
(site_id int default '10',city_code smallint,user_name varchar(32) default '',pv bigint sum default '0'
)
aggregate key(site_id, city_code, user_name)
distributed by hash(site_id,city_code);

    案例一 采用 site_id的分桶方式对于短查询十分有利,能够减少节点之间的数据交换,提高集群整体性能;案例二 采用 site_id、city_code的组合分桶方式对于长查询有利,能够利用分布式集群的整体并发性能

  • 短查询是指扫描数据量不大、单机就能完成扫描的查询。

  • 长查询是指扫描数据量大、多机并行扫描能显著提升性能的查询。

4.3 确定分桶数量

4.3.1 建表时

方式一:自动设置分桶数量

  自 2.5.7 版本起,支持根据机器资源和数据量自动设置分区中分桶数量。假设 BE 数量为 X,StarRocks 推断分桶数量的策略如下:

X <= 12  tablet_num = 2X
X <= 24  tablet_num = 1.5X
X <= 36 tablet_num = 36
X > 36  tablet_num = min(X, 48)

create table site_access(site_id int default '10',city_code smallint,user_name varchar(32) default '',pv bigint sum default '0'
)
aggregate key(site_id, city_code, user_name)
distributed by hash(site_id,city_code); --无需手动设置分桶数量# 如果需要开启该功能,配置FE动态参数 enable_auto_tablet_distribution=true。 建表后执行show partitions来查看为分区自动设置的分桶数量。

方式二:手动设置分桶数量

    确定分桶数量方式可以是:首先预估每个分区的数据量,然后按照每10 GB原始数据划分一个 Tablet计算,从而确定分桶数量。 单个Tablet的数据量理论上没有上下界,但建议在 1G - 10G 的范围内。如果单个Tablet 数据量过小,则数据的聚合效果不佳,且元数据管理压力大。如果数据量过大,则不利于副本的迁移、补齐。

-- 手动指定分桶个数的创建语法
distributed by hash(site_id) buckets 20

4.3.2 建表后

  • 新增一个分区时,参照上述的建表分桶设置规则
  • 已建分区:已创建分区的分桶数量不能修改

五、建表调优

   基于业务实际情况,在设计表结构时选择合理的分区键和分桶键,可以有效提高集群整体性能。

5.1 数据倾斜

     如果业务场景中单独采用倾斜度大的列做分桶,很大程度会导致访问数据倾斜,可以采用多列组合的方式进行分桶,将数据打散,使得各Tablet 数据更加均匀。

5.2 高并发

   分区和分桶应该尽量覆盖查询语句所带的条件,这样可以有效减少扫描数据,提高并发。

5.3 高吞吐

   尽量把数据打散,让集群以更高的并发扫描数据,完成相应计算。

5.4 元数据管理

   Tablet 过多会增加 FE/BE 的元数据管理和调度的资源消耗。

六、分区分桶及副本之间的关系

   数据库information_schema存储了关于StarRocks实例中所有对象的大量元数据信息。可以在表tables_config查看表的分区、分桶信息。

  • 表,分区,分桶以及副本的关系:

      Table (逻辑描述) -- > Partition(分区:管理单元) --> Bucket(分桶:每个分桶就是一个数据分片:Tablet,数据划分的最小逻辑单元)

    分区是逻辑概念,分桶是物理概念。每个分区partition内部会按照分桶键,采用哈希分桶算法将数据划分为多个桶bucket,每个桶的数据称之为一个数据分片tablet(实际的物理存储单元)。根据建表设置的副本数,计算有多少个副本在其他节点上(负载均衡)。如上图所示,当BE节点数和副本数一致时,每个BE节点会保留这个表对应的所有的tablet的数据(自身hash分桶对应的tablet数据和其他节点tablet的副本)

    一个表的Tablet总数量等于 = Partition num * Bucket num* Replica Num ,上述案例就等于 3*3*3 =27 

  • 表,分区,分桶,tablet,rowset,segment文件的关系:

     数据在导入时,最先落到磁盘上的是当前导入批次生成的rowset文件,每一次导入事务的成功,都会生成一个带有版本号的rowset文件。rowset文件由多个segment文件组成,segment文件是由segment writer生成的文件块。

    待补充~

注:参考文章:

数据分布 | StarRocks

第2.4章:StarRocks表设计--分区分桶与副本数_strrocks 建表分区-CSDN博客

数据划分 - Apache Doris

聊聊分布式 SQL 数据库Doris(三)-腾讯云开发者社区-腾讯云

【Doris】Doris存储层设计介绍1——存储结构设计解析_doris 存储原理-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/260883.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

单片机学习笔记---红外遥控红外遥控电机调速(完结篇)

目录 低电平触发中断和下降沿触发中断的区别 红外遥控 Int0.c Int.h Timer0.c Timer0.h IR.c IR.h main.c 红外遥控电机调速 Timer1.c Timer.h Motor.c Motor.h main.c 上一节讲了红外发送和接收的工作原理&#xff0c;这一节开始代码演示&#xff01; 提前说…

Linux-ls命令

目录 ls&#xff1a;查看目录下文件/文件夹 ls -l&#xff1a;列表显示文件 ls -a&#xff1a;显示所有文件正常情况下‘ . ’开头的文件是隐藏的 ls -la&#xff1a;以列表形式显示所有文件包括隐藏文件 ls -lt&#xff1a;按时间倒序查看文件 ls -R&#xff1a;递归方式…

基于JavaWeb实现的在线蛋糕商城

一、系统架构 前端&#xff1a;jsp | bootstrap | js | css 后端&#xff1a;servlet | mybatis 环境&#xff1a;jdk1.7 | mysql | maven | tomcat 二、代码及数据库 三、功能介绍 01. web页-首页 02. web页-商品分类 03. web页-热销 04. web页-新品 05. w…

dockerfile文件书写

1.dockerfile构建nginx镜像 1.1书写dockerfile文件 mkdir nginx #创建nginx目录 cd nginx vim dockerfile # 修改文件FROM centos # 基础镜像&#xff0c;默认最新的centos8操作系统 MAINTAINER xianchao # 指定镜像的作者信息 RUN rm -rf /etc/yum.repos.d/* # centos8默认…

MongoDB 权限管理

文章目录 前言1. 权限控制1.1 MongoDB 默认角色1.1.1 读写角色1.1.2 管理角色1.1.3 其他角色1.1.4 超级用户角色 1.2 用户管理1.2.1 查看用户1.2.2 创建新用户1.2.3 调整角色1.2.4 删除用户1.2.4 修改密码 前言 上一篇 《MongoDB 单机安装部署》 文章中&#xff0c;为 MongoDB…

【HarmonyOS应用开发】三方库(二十)

三方库的基本使用 一、如何获取三方库 目前提供了两种途径获取开源三方库&#xff1a; 通过访问Gitee网站开源社区获取 在Gitee中&#xff0c;搜索OpenHarmony-TPC仓库&#xff0c;在tpc_resource中对三方库进行了资源汇总&#xff0c;可以供开发者参考。 通过OpenHarmony三…

自然语言编程系列(二):自然语言处理(NLP)、编程语言处理(PPL)和GitHub Copilot X

编程语言处理的核心是计算机如何理解和执行预定义的人工语言&#xff08;编程语言&#xff09;&#xff0c;而自然语言处理则是研究如何使计算机理解并生成非正式、多样化的自然语言。GPT-4.0作为自然语言处理技术的最新迭代&#xff0c;其编程语言处理能力相较于前代模型有了显…

QEMU源码全解析 —— virtio(20)

接前一篇文章&#xff1a; 上回书重点解析了virtio_pci_modern_probe函数。再来回顾一下其中相关的数据结构&#xff1a; struct virtio_pci_device struct virtio_pci_device的定义在Linux内核源码/drivers/virtio/virtio_pci_common.h中&#xff0c;如下&#xff1a; /* O…

智慧驿站_智慧文旅驿站_轻松的驿站智慧公厕_5G智慧公厕驿站_5G模块化智慧公厕

多功能城市智慧驿站是在智慧城市建设背景下&#xff0c;所涌现的一种创新型社会配套设施。其中&#xff0c;智慧公厕作为城市智慧驿站的重要功能基础&#xff0c;具备社会配套不可缺少的特点&#xff0c;所以在应用场景上&#xff0c;拥有广泛的需求和要求。那么&#xff0c;城…

springcloud-网关(gateway)

springcloud-网关(gateway) 概述 \Spring Cloud Gateway旨在提供一种简单而有效的方式来路由到API&#xff0c;并为其提供跨领域的关注&#xff0c;如&#xff1a;安全、监控/指标和容错 常用术语 Route&#xff08;路由&#xff09;: 网关的基本构件。它由一个ID、一个目的地…

【ArcGIS微课1000例】0103:导出点、线、面要素的折点坐标值

点要素对应的是一个或者若干个坐标,线要素对应的是对个坐标值对应的点连起来,面要素是多个坐标值对应的点连起来构成的封闭多边形。本文讲述导出点的坐标值。 文章目录 一、点要素坐标导出1. 计算点坐标2. 导出点坐标二、线要素坐标导出1. 生成线要素折点2. 计算折点坐标3. 导…

【打工日常】使用docker部署Dashdot工具箱

一、Dashdot介绍 dashdot是一个简洁清晰的服务器数据仪表板&#xff0c;基于React实现 &#xff0c;主要是显示操作系统、进程、存储、内存、网络这五个的数据。 二、本次实践介绍 1. 本次实践简介 本次实践部署环境为个人测试环境 2. 本地环境规划 本次实践环境规划&#xf…

S-35390A开发

计时芯片 S-35390A芯片是计时芯片&#xff0c;一般用来计算时间。低功耗&#xff0c;宽电压&#xff0c;受温度影响小&#xff0c;适用于很多电路。它有一个问题&#xff0c;不阻止用户设置不存在的时间&#xff0c;设置进去之后计时或者闹钟定时会出错。 规格书阅读 首先我…

成为大佬之路--linux软件安装使用第000000003篇--vmare安装centos

准备工作 1.下载centos安装包 2.安装vmare 建议直接百度 绿色版 直接上最新版本旗舰版(pro) 新建虚拟机 1.打开vamre,点击文件--新建虚拟机 2.直接默认选择 "典型",点击下一步 3. 选择稍后安装操作系统,点击下一步 4.选择linux版本 因为安装的是centos直接选…

Arcmap excel转shp

使用excel表格转shp的时候&#xff0c;如果你的excel里面有很多字段&#xff0c;直接转很大概率会出现转换结果错误的情况&#xff0c;那么就需要精简一下字段的个数。将原来的表格文件另存一份&#xff0c;在另存为的文件中只保留关键的经度、纬度、和用于匹配的字段即可&…

【C++】C++11下线程库

C11下线程库 1. thread类的简单介绍2.线程函数参数3.原子性操作库(atomic)4.mutex的种类5. RAII风格加锁解锁5.1Lock_guard5.2unique_lock 6.condition_variable 1. thread类的简单介绍 在C11之前&#xff0c;涉及到多线程问题&#xff0c;都是和平台相关的&#xff0c;比如wi…

代码随想录第二十一天 701.二叉搜索树中的插入操作 108.将有序数组转换为二叉搜索树

701.二叉搜索树中的插入操作 题目描述 给定二叉搜索树&#xff08;BST&#xff09;的根节点 root 和要插入树中的值 value &#xff0c;将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据 保证 &#xff0c;新值和原始二叉搜索树中的任意节点值都不同。 注意&a…

pom.xml常见依赖及其作用

1.org.mybatis.spring.boot下的mybatis-spring-boot-starter&#xff1a;这个依赖是mybatis和springboot的集成库&#xff0c;简化了springboot项目中使用mybatis进行持久化操作的配置和管理 2.org.projectlombok下的lombok&#xff1a;常用注解Data、NoArgsConstructor、AllA…

ArcGIS学习(八)基于GIS平台的控规编制办法

ArcGIS学习(八)基于GIS平台的控规编制办法 上一任务我们学习了”如何进行图片数据的矢量化?" 这一关我们来学习一个比较简单的案例一一”如何在ArcGIS中录入控规指标,绘制控规图纸?" 首先,先来看看这个案例的分析思路以及导入CAD格式的控规图纸。 接着,来看…

使用静态CRLSP配置MPLS TE隧道

正文共&#xff1a;1591 字 13 图&#xff0c;预估阅读时间&#xff1a;4 分钟 静态CRLSP&#xff08;Constraint-based Routed Label Switched Paths&#xff0c;基于约束路由的LSP&#xff09;是指在报文经过的每一跳设备上&#xff08;包括Ingress、Transit和Egress&#xf…