【海贼王的数据航海:利用数据结构成为数据海洋的霸主】时间复杂度 | 空间复杂度

目录

1 -> 算法效率

1.1 -> 如何衡量一个算法的好坏?

1.2 -> 算法的复杂度

2 -> 时间复杂度

2.1 -> 时间复杂度的概念

2.2 -> 大O的渐进表示法

2.3 -> 常见时间复杂度计算

3 -> 空间复杂度

4 -> 常见复杂度对比


1 -> 算法效率

1.1 -> 如何衡量一个算法的好坏?

对于以下斐波那契数列:

#define _CRT_SECURE_NO_WARNINGS#include <iostream>
using namespace std;long long fib(int N)
{if (N < 3)return 1;return fib(N - 1) + fib(N - 2);
}int main()
{return 0;
}

用递归实现斐波那契数列,看上去代码十分简洁,但简洁一定就是好算法吗?如何衡量一个算法的好坏?

1.2 -> 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机存储容量很小。所以对于空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要特别关注一个算法的空间复杂度。

2 -> 时间复杂度

2.1 -> 时间复杂度的概念

定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上来讲,是不能算出来的,只有把程序放在机器上跑起来才能知道。但是我们需要每个算法都上机测试吗?固然可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方法。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

#define _CRT_SECURE_NO_WARNINGS#include <iostream>
using namespace std;// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N; ++i)for (int j = 0; j < N; ++j)++count;for (int k = 0; k < 2 * N; ++k)++count;int M = 10;while (M--)++count;cout << count << endl;
}int main()
{return 0;
}

Func1执行的基本操作数:

F(N) = N^{2} + 2N + 10

-> N = 10 F(N) = 130
-> N = 100 F(N) = 10210
-> N = 1000 F(N) = 1002010

实际我们在计算时间复杂度时,并不一定要计算精确的执行次数,只需要大概执行次数,所以我们使用大O的渐进表示法。

2.2 -> 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

  1. 在常数1取代运行时间中的所有加法常数;
  2. 在修改后的运行次数函数中,只保留最高阶项;
  3. 如果最高阶项存在且不为1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法后,Func1的时间复杂度为:

O(N^{2})

-> N = 10 F(N) = 100

-> N = 100 F(N) = 10000
-> N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。 

另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最好情况:任意输入规模的最小运行次数(下界)
  • 平均情况:任意输入规模的期望运行次数
  • 最坏情况:任意输入规模的最大运行次数(上界)

例如:在一个长度为N的数组中搜索一个数据x

  • 最好情况:1次找到
  • 平均情况:N / 2次找到
  • 最坏情况:N次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中的搜索数据时间复杂度为:

O(N)

2.3 -> 常见时间复杂度计算

实例1:

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N; ++k)++count;int M = 10;while (M--)++count;cout << count << endl;
}

实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++k)++count;for (int k = 0; k < N; ++k)++count;cout << count << endl;
}

实例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++k)++count;cout << count << endl;
}

实例4:

// 计算strchr的时间复杂度?
const char* strchr(const char* str, int character);

实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n - 1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end - begin) >> 1);if (a[mid] < x)begin = mid + 1;else if (a[mid] > x)end = mid - 1;elsereturn mid;}return -1;
}

实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if (0 == N)return 1;return Fac(N - 1) * N;
}

实例8:

// 计算斐波那契递归fib的时间复杂度?
long long fib(size_t N)
{if (N < 3)return 1;return fib(N - 1) + fib(N - 2);
}

答案及分析:

1. 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)
2. 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
3. 实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)
4. 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
5. 实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)
6. 实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。
7. 实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。
8. 实例8通过计算分析发现基本操作递归了2^N次,时间复杂度为O(2^N)。

3 -> 空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度。

空间复杂度不是程序占用了多少byte的空间,因为意义不大,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本与时间复杂度类似,也是使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时显式申请的额外空间来确定。

实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

实例2:

// 计算fib的空间复杂度?
// 返回斐波那契数列的前n项
long long* fib(size_t n)
{if (n == 0)return NULL;long long* arr = (long long*)malloc((n + 1) * sizeof(long long));arr[0] = 0;arr[1] = 1;for (int i = 2; i <= n; ++i)arr[i] = arr[i - 1] + arr[i - 2];return arr;
}

实例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if (N == 0)return 1;return Fac(N - 1) * N;
}

答案及分析:

1. 实例1使用了常数个额外空间,所以空间复杂度为 O(1)
2. 实例2动态开辟了N个空间,空间复杂度为 O(N)
3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

4 -> 常见复杂度对比

一般算法的常见复杂度:

5201314O(1)常数阶
3n + 4O(n)线性阶
3n ^ 2 + 4n + 5O(n ^ 2)平方阶
3log(2)n + 4O(logn)对数阶
2n + 3nlog(2)n + 4O(nlogn)nlogn阶
n ^ 3 + n ^ 2 + 3n + 4O(n ^ 3)立方阶
2 ^ nO(2 ^ n)指数阶


感谢大佬们支持!!!

互三啦!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/261769.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【regex】正则表达式

集合 [0-9.] [0-9.\-] 例子 正则表达式&#xff0c;按照规则写&#xff0c;写的时候应该不算困难&#xff0c;但是可读性差 不同语言中regex会有微小的差异 vim 需要转义&#xff0c; perl/python中不需要转义 锚位 \b am\b i am 命名 / 命名捕获组 ( 捕获组&#xff08;…

机器学习 | 实现图像加密解密与数字水印处理

目录 实现窗口可视化 数字图像加密 窗口布局设置 基于混沌Logistic的图像加密 基于三重DES的图像加密 数字图像解密 窗口布局设置 基于混沌Logistic的图像解密 基于三重DES的图像解密 基于LSB的数字水印提取 窗口布局设置 水印的嵌入与提取 实现窗口可视化 这里…

Jenkins2.426邮件通知配置

之前安装的jenkins出现问题了&#xff0c;重新装了jenkins&#xff0c;需要重新配置&#xff1a;Maven&#xff0c;JDK&#xff0c;Allure报告&#xff0c;邮件通知&#xff0c;Extended E-mail Notification等 配置Maven&#xff0c;JDK参考&#xff1a;CICD集合(四):Jenkins…

Nignx的搭建与核心配置

目录 一、Nginx是什么&#xff1f; 1、Nginx概述 2、Nginx模块与作用 3、Nginx三大作用&#xff1a;反向代理&#xff0c;负载均衡&#xff0c;动静分离 nginx七层负载均衡调度算法&#xff08;六种&#xff09; 1、轮询&#xff08;默认调度算法&#xff09; 2、加权轮…

2.14日学习打卡----初学Zookeeper(一)

2.14日学习打卡 目录: 2.14日学习打卡Zookeeper概念一. 集中式到分布式单机架构集群架构什么是分布式三者区别 二. CAP定理分区容错性一致性可用性一致性和可用性的矛盾一致性和可用性如何选择 三. 什么是Zookeeper分布式架构Zookeeper从何而来Zookeeper介绍 四. 应用场景数据发…

基于Embedding召回和DSSM双塔模型

文章目录 基于Embedding召回介绍基于Embedding召回算法分类I2I召回U2I召回 DSSM模型DSSM双塔模型层次 基于Embedding召回介绍 基于embedding的召回是从内容文本信息和用户查询的角度出发&#xff0c;利用预训练的词向量模型或深度学习模型&#xff0c;将文本信息转换成向量进行…

Windows7安装指南

概要&#xff1a; 本篇演示Windows7的安装过程 一、说明 1、电脑 笔者的电脑品牌是acer(宏碁/宏基) 电脑开机按F2可进入BIOS 2、Windows7启动U盘 Windows7启动U盘作为Windows7的安装来源 该U盘的制作可参考笔者的文章 Windows制作Windows的U盘启动盘 Windows7没有USB…

mysql 锁详解

目录 前言 一、全局锁 二、表级锁 三、行锁 前言 为什么要设计锁&#xff0c;锁设计初衷是为了解决多线程下并发问题。出现并发的时候用锁进行数据同步&#xff0c;避免因并发造成了数据错误(数据覆盖)。可见锁的重要性&#xff0c;并不是所有的数据库都有锁。比如Redis&a…

51单片机学习(3)-----独立按键控制LED的亮灭状态

前言&#xff1a;感谢您的关注哦&#xff0c;我会持续更新编程相关知识&#xff0c;愿您在这里有所收获。如果有任何问题&#xff0c;欢迎沟通交流&#xff01;期待与您在学习编程的道路上共同进步了。 目录 一. 器件介绍及实验原理 1.独立按键 &#xff08;1&#xff09;独…

Vue图片浏览组件v-viewer,支持旋转、缩放、翻转等操作

Vue图片浏览组件v-viewer&#xff0c;支持旋转、缩放、翻转等操作 之前用过viewer.js&#xff0c;算是市场上用过最全面的图片预览。v-viewer&#xff0c;是基于viewer.js的一个图片浏览的Vue组件&#xff0c;支持旋转、缩放、翻转等操作。 基本使用 安装&#xff1a;npm安装…

【寸铁的刷题笔记】树、dfs、bfs、回溯、递归(一)

【寸铁的刷题笔记】树、dfs、bfs、回溯、递归(一) 大家好 我是寸铁&#x1f44a; 总结了一篇刷题关于树、dfs、bfs、回溯、递归的文章✨ 喜欢的小伙伴可以点点关注 &#x1f49d; 105. 从前序与中序遍历序列构造二叉树 模拟分析图 代码实现 /*** Definition for a binary tre…

说一下 JVM 运行时数据区 ?

目录 一、程序计数器&#xff08;Program Counter Register&#xff09; 二、Java 虚拟机栈&#xff08;Java Virtual Machine Stacks&#xff09; 三、本地方法栈&#xff08;Native Method Stack&#xff09; 四、Java 堆&#xff08;Java Heap&#xff09; 五、方法区&…

Imagewheel私人图床搭建结合内网穿透实现无公网IP远程访问教程

文章目录 1.前言2. Imagewheel网站搭建2.1. Imagewheel下载和安装2.2. Imagewheel网页测试2.3.cpolar的安装和注册 3.本地网页发布3.1.Cpolar临时数据隧道3.2.Cpolar稳定隧道&#xff08;云端设置&#xff09;3.3.Cpolar稳定隧道&#xff08;本地设置&#xff09; 4.公网访问测…

图——最小生成树实现(Kruskal算法,prime算法)

目录 预备知识&#xff1a; 最小生成树概念&#xff1a; Kruskal算法&#xff1a; 代码实现如下&#xff1a; 测试&#xff1a; Prime算法 &#xff1a; 代码实现如下&#xff1a; 测试&#xff1a; 结语&#xff1a; 预备知识&#xff1a; 连通图&#xff1a;在无向图…

代码随想录第二十三天 回溯算法 77.组合 216.组合总和 17.电话号码的字母组合

回溯算法 LeetCode 77 组合 题目描述 思路 递归函数的返回值以及参数 在这里要定义两个全局变量&#xff0c;一个用来存放符合条件单一结果&#xff0c;一个用来存放符合条件结果的集合。 代码如下&#xff1a; vector<vector<int>> result; // 存放符合条件…

【Java EE初阶十六】网络原理(一)

在网络原理中主要学习TCP/IP四层模型中的重点网络协议 1. 应用层 1.1 应用程序与协议 应用层是和程序员接触最密切的&#xff1b; 应用程序&#xff1a;在应用层这里&#xff0c;很多时候都是程序员自定义应用层协议&#xff08;步骤&#xff1a;1、根据需求&#xff0c;明确…

程序员必备技能----删库跑路大总结

删库跑路大总结&#xff0c;各个都是大杀器&#xff0c;破坏性太大&#xff0c;轻易不要尝试。 删除linux根目录&#xff0c;用户目录&#xff0c;其实还可以增加一个删除/etc。删除&#xff08;清除&#xff09;数据库。删除redis缓存和持久化文件。删除mongodb库。git push …

MCAL知识点(二十七):TC275如何通过GPT12实现ABZ解码

目录 1、概述 2、代码实现 1、概述 GPT12 - General Purpose Timer Unit (GPT12):通用定时器单元,具备较为灵活的定时器结构,可以用来做定时器、事件计数、脉冲宽度测量、产生PWM、频率调制、ABZ编码器增量测量。文章记录一下如何通过GPT12实现编码器ABZ信号的测量。 注意…

c#创建安装windows服务

背景:最近在做设备数据对接采集时,遇到一些设备不是标准的Service-Client接口,导致采集的数据不够准确;比如设备如果中途开关机后,加工的数量就会从0开始重新计数,因此需要实时监控设备的数据,进行叠加处理;考略到工厂设备比较多,实时监听接口的数据为每秒3次,因此将…

week04day01(爬虫)

一. 爬虫 只爬取公开的信息&#xff0c;不能爬取未公开的后台数据 1.爬虫的合法性 法无禁止皆可为 -- 属于法律的灰色地带https://www.tencent.com/robots.txt -- 网站/robots.txt 可以查看禁止爬取的内容 2. URL Uniform Resource Locator 统一资源定位符https://www.…