k8s(2)

目录

一.二进制部署k8s

常见的K8S安装部署方式:

k8s部署 二进制与高可用的区别

二.部署k8s

初始化操作:

每台node安装docker:

在 master01 节点上操作;

准备cfssl证书生成工具::

执行脚本文件:

拉入etcd压缩包:

创建用于存放 etcd 配置文件,命令文件,证书的目录

执行etcd.sh脚本:

将目录所有文件复制到node节点上:

修改node节点的etcd文件:

启动etcd服务:

检查etcd群集状态:

查看etcd集群成员列表:

​编辑安装 Master 组件,准备生成CA证书:

创建用于生成CA证书、相关组件的证书和私钥的目录:

创建kubernetes工作目录:

复制CA证书、apiserver相关证书和私钥到 kubernetes工作目录的 ssl 子目录中

上传解压 kubernetes 压缩包:

复制master组件的关键命令文件到 kubernetes工作目录的 bin 子目录中:

解压master.zip:

启动 scheduler 服务:

启动 controller-manager 服务:

生成kubectl连接集群的kubeconfig文件:

过kubectl工具查看当前集群组件状态:

 部署 Worker Node 组件:

创建kubernetes工作目录:

在 master01 节点上操作:

上传kubeconfig.sh文件到/opt/k8s/kubeconfig目录中:

授权,执行脚本:

RBAC授权,使用户 kubelet-bootstrap 能够有权限发起 CSR 请求证书:

master节点启动 kubelet 服务:

通过 CSR 请求:

在 node01 节点上操作:

启动proxy服务:


一.二进制部署k8s

常见的K8S安装部署方式:


Minikube是一个工具,可以在本地快速运行一个单节点微型K8S,仅用于学习、预览K8S的一些特性使用。
部署地址:https://kubernetes.io/docs/setup/minikube

Kubeadm也是一个工具,提供kubeadm init和kubeadm join,用于快速部署K8S集群,相对简单。
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/

二进制安装部署
生产首选,从官方下载发行版的二进制包,手动部署每个组件和自签TLS证书,组成K8S集群,新手推荐。
https://github.com/kubernetes/kubernetes/releases

Kubeadm降低部署门槛,但屏蔽了很多细节,遇到问题很难排查。如果想更容易可控,推荐使用二进制包部署Kubernetes集群,虽然手动部署麻烦点,期间可以学习很多工作原理,也利于后期维护。

k8s部署 二进制与高可用的区别

二进制部署
部署难,管理方便,集群伸展性能好
更稳定,集群规模到达一定的规模(几百个节点、上万个Pod),二进制稳定性是要高于kubeadm部署
遇到故障,宿主机起来了,进程也会起来。

kubeadm部署
部署简单,管理难
是以一种容器管理容器的方式允许的组件及服务,故障恢复时间比二进制慢
遇到故障,启动宿主机,再启动进程,最后去启动容器,集群才能恢复,速度比二进制慢

二.部署k8s

k8s master节点:192.168.233.10,20

k8s node节点:192.168.233.30,40 (容器引擎为docker)

etcd集群:192.168.233.10,30,40

负载均衡nginx+keepalive01(master): 192.168.233.50
负载均衡nginx+keepalive02(backup):192.168.233.60

初始化操作:

关闭防火墙
systemctl stop firewalld
systemctl disable firewalld

关闭selinux
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config

关闭swap
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab 

根据规划设置主机名
hostnamectl set-hostname master01
hostnamectl set-hostname node01
hostnamectl set-hostname node02

在master添加hosts
cat >> /etc/hosts << EOF
192.168.233.10 master01
192.168.233.30 node01
192.168.233.40 node02
EOF

调整内核参数
cat > /etc/sysctl.d/k8s.conf << EOF
#开启网桥模式,可将网桥的流量传递给iptables链
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
#关闭ipv6协议
net.ipv6.conf.all.disable_ipv6=1
net.ipv4.ip_forward=1
EOF

sysctl --system

时间同步
yum install ntpdate -y
ntpdate time.windows.com

每台node安装docker:

yum install -y yum-utils device-mapper-persistent-data lvm2

yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 

切换到docker目录下,添加文件:

{"registry-mirrors": ["https://6ijb8ubo.mirror.aliyuncs.com"],"exec-opts": ["native.cgroupdriver=systemd"],"log-driver":"json-file","log-opts":{"max-size":"500m","max-file":"3"}
}

.

安装设置为开机自动启动:

yum install -y docker-ce docker-ce-cli containerd.io
systemctl start docker.service
systemctl enable docker.service 

在 master01 节点上操作;

准备cfssl证书生成工具::

wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfo

chmod +x /usr/local/bin/*

创建工作目录:

添加脚本文件:

#!/bin/bash
#配置证书生成策略,让 CA 软件知道颁发有什么功能的证书,生成用来签发其他组件证书的根证书
cat > ca-config.json <<EOF
{"signing": {"default": {"expiry": "87600h"},"profiles": {"usages": ["signing","key encipherment","server auth","client auth"]}}}
}
EOF#ca-config.json:可以定义多个 profiles,分别指定不同的过期时间、使用场景等参数;
#后续在签名证书时会使用某个 profile;此实例只有一个 www 模板。
#expiry:指定了证书的有效期,87600h 为10年,如果用默认值一年的话,证书到期后集群会立即宕掉
#signing:表示该证书可用于签名其它证书;生成的 ca.pem 证书中 CA=TRUE;
#key encipherment:表示使用非对称密钥加密,如 RSA 加密;
#server auth:表示client可以用该 CA 对 server 提供的证书进行验证;
#client auth:表示server可以用该 CA 对 client 提供的证书进行验证;
#注意标点符号,最后一个字段一般是没有逗号的。#-----------------------
#生成CA证书和私钥(根证书和私钥)
cat > ca-csr.json <<EOF
{"CN": "etcd","key": {"algo": "rsa","size": 2048{"C": "CN","L": "Beijing","ST": "Beijing"}]
}
EOF#CN:Common Name,浏览器使用该字段验证网站或机构是否合法,一般写的是域名 
#key:指定了加密算法,一般使用rsa(size:2048)
#C:Country,国家
#ST:State,州,省
#L:Locality,地区,城市
#O: Organization Name,组织名称,公司名称
#OU: Organization Unit Name,组织单位名称,公司部门cfssl gencert -initca ca-csr.json | cfssljson -bare ca#生成的文件:
#ca-key.pem:根证书私钥
#ca.pem:根证书
#ca.csr:根证书签发请求文件#注意:CSRJSON 文件用的是相对路径,所以 cfssl 的时候需要 csr 文件的路径下执行,也可以指定为绝对路径。
#cfssljson 将 cfssl 生成的证书(json格式)变为文件承载式证书,-bare 用于命名生成的证书文件。
#-----------------------
{"CN": "etcd","hosts": ["192.168.233.10","192.168.233.30","192.168.233.40"],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "BeiJing","ST": "BeiJing"}]
}
EOF#hosts:将所有 etcd 集群节点添加到 host 列表,需要指定所有 etcd 集群的节点 ip 或主机名不能使用网段,>新增 etcd 服务器需要重新签发证书。cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=www server-csr.json | cfssljson -bare server#生成的文件:
#server.csr:服务器的证书请求文件
#server-key.pem:服务器的私钥
#server.pem:服务器的数字签名证书#-config:引用证书生成策略文件 ca-config.json
#-profile:指定证书生成策略文件中的的使用场景,比如 ca-config.json 中的 www

#!/bin/bash
#example: ./etcd.sh etcd01 192.168.233.10 etcd02=https://192.168.233.30:2380,etcd03=https://192.168.233.40:2380#创建etcd配置文件/opt/etcd/cfg/etcd
ETCD_NAME=$1
ETCD_IP=$2
ETCD_CLUSTER=$3WORK_DIR=/opt/etcd#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://${ETCD_IP}:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://${ETCD_IP}:2379"
ETCD_INITIAL_CLUSTER="etcd01=https://${ETCD_IP}:2380,${ETCD_CLUSTER}"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
EOF#Member:成员配置
#ETCD_NAME:节点名称,集群中唯一。成员名字,集群中必须具备唯一性,如etcd01#Clustering:集群配置
#ETCD_INITIAL_CLUSTER_TOKEN:集群Token。用于区分不同集群。本地如有多个集群要设为不同
#ETCD_INITIAL_CLUSTER_STATE:加入集群的当前状态,new是新集群,existing表示加入已有集群。#创建etcd.service服务管理文件
cat > /usr/lib/systemd/system/etcd.service <<EOF
[Unit]
Description=Etcd Server
After=network.target
After=network-online.target
Wants=network-online.target[Service]
Type=notify
EnvironmentFile=${WORK_DIR}/cfg/etcd
ExecStart=${WORK_DIR}/bin/etcd \
--cert-file=${WORK_DIR}/ssl/server.pem \
--key-file=${WORK_DIR}/ssl/server-key.pem \
--trusted-ca-file=${WORK_DIR}/ssl/ca.pem \
--peer-cert-file=${WORK_DIR}/ssl/server.pem \
--peer-key-file=${WORK_DIR}/ssl/server-key.pem \
--peer-trusted-ca-file=${WORK_DIR}/ssl/ca.pem \
--logger=zap \
--enable-v2
Restart=on-failure
LimitNOFILE=65536[Install]
WantedBy=multi-user.target
EOF#--enable-v2:开启 etcd v2 API 接口。当前 flannel 版本不支持 etcd v3 通信
#--logger=zap:使用 zap 日志框架。zap.Logger 是go语言中相对日志库中性能最高的
#--peer开头的配置项用于指定集群内部TLS相关证书(peer 证书),这里全部都使用同一套证书认证
#不带--peer开头的的参数是指定 etcd 服务器TLS相关证书(server 证书),这里全部都使用同一套证书认证systemctl daemon-reload
systemctl enable etcd
systemctl restart etcd
执行脚本文件:

./etcd-cert.sh

移动文件:

mkdir etcd-cert

mv ca* server* etcd-cert

拉入etcd压缩包:

解压:

tar zxvf etcd-v3.4.26-linux-amd64.tar.gz

创建用于存放 etcd 配置文件,命令文件,证书的目录

mkdir -p /opt/etcd/{cfg,bin,ssl}

.切换到k8s中将命令移动到bin下:

mv etcd etcdctl /opt/etcd/bin/

复制etcd-cert下的.pem结尾文件到ssl目录下:

cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/

执行etcd.sh脚本:

./etcd.sh etcd01 192.168.233.10 etcd02=https://192.168.233.30:2380,etcd03=https://192.168.233.40:2380

查看端口:

将目录所有文件复制到node节点上:

scp -r /opt/etcd/ root@192.168.233.30:/opt/
scp -r /opt/etcd/ root@192.168.233.40:/opt/

scp /usr/lib/systemd/system/etcd.service root@192.168.233.30:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root@192.168.233.40:/usr/lib/systemd/system/

修改node节点的etcd文件:

vim /opt/etcd/cfg/etcd

启动etcd服务:

systemctl start etcd
systemctl enable etcd
systemctl status etcd

检查etcd群集状态:

ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.233.10:2379,https://192.168.233.30:2379,https://192.168.233.40:2379" endpoint health --write-out=table

查看etcd集群成员列表:

ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.233.10:2379,https://192.168.233.30:2379,https://192.168.233.40:2379" --write-out=table member list

安装 Master 组件,准备生成CA证书:

#!/bin/bash
#配置证书生成策略,让 CA 软件知道颁发有什么功能的证书,生成用来签发其他组件证书的根证书
cat > ca-config.json <<EOF
{"signing": {"default": {"expiry": "87600h"},"profiles": {"kubernetes": {"expiry": "87600h","usages": ["signing","key encipherment","server auth","client auth"]}}}
}
EOF#生成CA证书和私钥(根证书和私钥)
cat > ca-csr.json <<EOF
{"CN": "kubernetes","key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "Beijing","ST": "Beijing","O": "k8s","OU": "System"}]
}
EOF
#!/bin/bash
#配置证书生成策略,让 CA 软件知道颁发有什么功能的证书,生成用来签发其他组件证书的根证书
cat > ca-config.json <<EOF
{"signing": {"default": {"expiry": "87600h"},"profiles": {"kubernetes": {"expiry": "87600h","usages": ["signing","key encipherment","server auth","client auth"]}}}
}
EOF#生成CA证书和私钥(根证书和私钥)
cat > ca-csr.json <<EOF
{"CN": "kubernetes","key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "Beijing","ST": "Beijing","O": "k8s","OU": "System"}]
}
EOFcfssl gencert -initca ca-csr.json | cfssljson -bare ca -#-----------------------
#生成 apiserver 的证书和私钥(apiserver和其它k8s组件通信使用)
#hosts中将所有可能作为 apiserver 的 ip 添加进去,后面 keepalived 使用的 VIP 也要加入
cat > apiserver-csr.json <<EOF
{"CN": "kubernetes","hosts": ["10.0.0.1","127.0.0.1","192.168.233.10","192.168.233.20", "192.168.233.100","192.168.233.50","192.168.233.60","kubernetes","kubernetes.default","kubernetes.default.svc","kubernetes.default.svc.cluster","kubernetes.default.svc.cluster.local"],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "BeiJing","ST": "BeiJing","O": "k8s","OU": "System"}]
}
EOF#-----------------------
#生成 kubectl 连接集群的证书和私钥(kubectl 和 apiserver 通信使用)
cat > admin-csr.json <<EOF
{"CN": "admin","hosts": [],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "BeiJing","ST": "BeiJing","O": "system:masters","OU": "System"}]
}
EOF#-----------------------
#生成 kube-proxy 的证书和私钥(kube-proxy 和 apiserver 通信使用)
cat > kube-proxy-csr.json <<EOF
{"CN": "system:kube-proxy","hosts": [],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "BeiJing","ST": "BeiJing","O": "k8s","OU": "System"}]
}
EOFcfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy
创建用于生成CA证书、相关组件的证书和私钥的目录:

移动脚本文件到目录中;

执行文件:

创建kubernetes工作目录:

mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}

复制CA证书、apiserver相关证书和私钥到 kubernetes工作目录的 ssl 子目录中

cp ca*pem apiserver*pem /opt/kubernetes/ssl/

上传解压 kubernetes 压缩包:

tar xf kubernetes-server-linux-amd64.tar.gz

复制master组件的关键命令文件到 kubernetes工作目录的 bin 子目录中:

cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/

ln -s /opt/kubernetes/bin/* /usr/local/bin/

获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格:

head -c 16 /dev/urandom | od -An -t x | tr -d ' '

生成 token.csv 文件,按照 Token序列号,用户名,UID,用户组 的格式生成:

#!/bin/bash
#获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格
BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')
#生成 token.csv 文件,按照 Token序列号,用户名,UID,用户组 的格式生成
cat > /opt/kubernetes/cfg/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOF

解压master.zip:

授权:

二进制文件、token、证书都准备好后,开启 apiserver 服务

./apiserver.sh 192.168.233.10 https://192.168.233.10:2379,https://192.168.233.30:2379,https://192.168.233.40:2379

安全端口6443用于接收HTTPS请求,用于基于Token文件或客户端证书等认证

netstat -natp | grep 6443

启动 scheduler 服务:

#!/bin/bash
##创建 kube-scheduler 启动参数配置文件
MASTER_ADDRESS=$1cat >/opt/kubernetes/cfg/kube-scheduler <<EOF
KUBE_SCHEDULER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--leader-elect=true \\
--kubeconfig=/opt/kubernetes/cfg/kube-scheduler.kubeconfig \\
--bind-address=$MASTER_ADDRESS"
EOF#-?kubeconfig:连接 apiserver 用的配置文件,用于识别 k8s 集群
#--leader-elect=true:当该组件启动多个时,自动启动 leader 选举
#k8s 中 Controller-Manager 和 Scheduler 的选主逻辑:k8s 中的 etcd 是整个集群所有状态信息的存储,涉及>数据的读写和多个 etcd 之间数据的同步,对数据的一致性要求严格,所以使用较复杂的 raft 算法来选择用于提>交数据的主节点。而 apiserver 作为集群入口,本身是无状态的 web 服务器,多个 apiserver 服务之间直接负载
请求并不需要做选主。Controller-Manager 和 Scheduler 作为任务类型的组件,比如 controller-manager 内置>的 k8s 各种资源对象的控制器实时的 watch apiserver 获取对象最新的变化事件做期望状态和实际状态调整,scheduler watch 未绑定节点的 pod 做节点选择, 显然多个这些任务同时工作是完全没有必要的,所以 controller-manager 和 scheduler 也是需要选主的,但是选主逻辑和 etcd 不一样的,这里只需要保证从多个 controller-manager 和 scheduler 之间选出一个 leader 进入工作状态即可,而无需考虑它们之间的数据一致和同步。##生成kube-scheduler证书
#创建证书请求文件
cat > kube-scheduler-csr.json << EOF
{"CN": "system:kube-scheduler","hosts": [],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "BeiJing","ST": "BeiJing","O": "system:masters","OU": "System"}]
}
EOF#生成证书和私钥#生成kubeconfig配置文件
KUBE_CONFIG="/opt/kubernetes/cfg/kube-scheduler.kubeconfig"
KUBE_APISERVER="https://192.168.233.10:6443"#配置kubernetes集群参数
kubectl config set-cluster kubernetes \--certificate-authority=/opt/kubernetes/ssl/ca.pem \--embed-certs=true \--server=${KUBE_APISERVER} \--kubeconfig=${KUBE_CONFIG}
#配置客户端认证参数
kubectl config set-credentials kube-scheduler \--client-certificate=./kube-scheduler.pem \--client-key=./kube-scheduler-key.pem \--embed-certs=true \--kubeconfig=${KUBE_CONFIG}
#设置上下文参数 
kubectl config set-context default \--cluster=kubernetes \--user=kube-scheduler \--kubeconfig=${KUBE_CONFIG}
#设置默认上下文
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}##创建 kube-scheduler.service 服务管理文件
cat >/usr/lib/systemd/system/kube-scheduler.service <<EOF
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-scheduler
ExecStart=/opt/kubernetes/bin/kube-scheduler \$KUBE_SCHEDULER_OPTS
Restart=on-failure[Install]
WantedBy=multi-user.target
EOFsystemctl daemon-reload
systemctl enable kube-scheduler
systemctl restart kube-scheduler

启动脚本:

启动 controller-manager 服务:

#!/bin/bash
##创建 kube-controller-manager 启动参数配置文件
MASTER_ADDRESS=$1cat >/opt/kubernetes/cfg/kube-controller-manager <<EOF
KUBE_CONTROLLER_MANAGER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--leader-elect=true \\
--kubeconfig=/opt/kubernetes/cfg/kube-controller-manager.kubeconfig \\
--bind-address=$MASTER_ADDRESS \\
--allocate-node-cidrs=true \\
--cluster-cidr=10.244.0.0/16 \\
--service-cluster-ip-range=10.0.0.0/24 \\
--cluster-signing-cert-file=/opt/kubernetes/ssl/ca.pem \\
--cluster-signing-key-file=/opt/kubernetes/ssl/ca-key.pem  \\
--root-ca-file=/opt/kubernetes/ssl/ca.pem \\
--service-account-private-key-file=/opt/kubernetes/ssl/ca-key.pem \\
--cluster-signing-duration=87600h0m0s"
EOF#––leader-elect:当该组件启动多个时,自动选举(HA)
#-–kubeconfig:连接 apiserver 用的配置文件,用于识别 k8s 集群##生成kube-controller-manager证书
#创建证书请求文件
cat > kube-controller-manager-csr.json << EOF
{"CN": "system:kube-controller-manager","hosts": [],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "BeiJing", "ST": "BeiJing","O": "system:masters","OU": "System"}]
}
EOF#生成证书和私钥#生成kubeconfig配置文件
KUBE_CONFIG="/opt/kubernetes/cfg/kube-controller-manager.kubeconfig"
KUBE_APISERVER="https://192.168.233.10:6443"#配置kubernetes集群参数
kubectl config set-cluster kubernetes \--certificate-authority=/opt/kubernetes/ssl/ca.pem \--embed-certs=true \--server=${KUBE_APISERVER} \--kubeconfig=${KUBE_CONFIG}
#配置客户端认证参数
kubectl config set-credentials kube-controller-manager \--client-certificate=./kube-controller-manager.pem \--client-key=./kube-controller-manager-key.pem \--embed-certs=true \--kubeconfig=${KUBE_CONFIG}
#设置上下文参数
kubectl config set-context default \--cluster=kubernetes \--user=kube-controller-manager \--kubeconfig=${KUBE_CONFIG}
#设置默认上下文
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}##创建 kube-controller-manager.service 服务管理文件
cat >/usr/lib/systemd/system/kube-controller-manager.service <<EOF
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-controller-manager
ExecStart=/opt/kubernetes/bin/kube-controller-manager \$KUBE_CONTROLLER_MANAGER_OPTS
Restart=on-failure[Install]
WantedBy=multi-user.target
EOFsystemctl daemon-reload
systemctl enable kube-controller-manager
systemctl restart kube-controller-manager

执行脚本:

 ./controller-manager.sh 192.168.233.10

​​​​​​

生成kubectl连接集群的kubeconfig文件:

#!/bin/bash
mkdir /root/.kube
KUBE_CONFIG="/root/.kube/config"
KUBE_APISERVER="https://192.168.233.10:6443"#切换到k8s证书目录操作
cd /opt/k8s/k8s-cert/--certificate-authority=/opt/kubernetes/ssl/ca.pem \--embed-certs=true \--client-certificate=./admin.pem \--client-key=./admin-key.pem \
kubectl config set-context default \--kubeconfig=${KUBE_CONFIG}
#设置默认环境上下文
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}
#生成的 kubeconfig 被保存到 /root/.kube/config 文件#########################################################
#集群参数
#本段设置了所需要访问的集群的信息。使用set-cluster设置了需要访问的集群,如上为kubernetes,这只是个名>称,实际为--server指向的apiserver;--certificate-authority设置了该集群的公钥;--embed-certs为true表示
将--certificate-authority证书写入到kubeconfig中;--server则表示该集群的kube-apiserver地址#用户参数
#本段主要设置用户的相关信息,主要是用户证书。如上的用户名为admin,证书为:/opt/kubernetes/ssl/admin.pem,私钥为:/opt/kubernetes/ssl/admin-key.pem。注意客户端的证书首先要经过集群CA的签署,否则不会被集群
认可。此处使用的是ca认证方式,也可以使用token认证,如kubelet的 TLS Boostrap 机制下的 bootstrapping 使
用的就是token认证方式。上述kubectl使用的是ca认证,不需要token字段#上下文参数
#集群参数和用户参数可以同时设置多对,在上下文参数中将集群参数和用户参数关联起来。上面的上下文名称为default,集群为kubenetes,用户为admin,表示使用admin的用户凭证来访问kubenetes集群的default命名空间,也>可以增加--namspace来指定访问的命名空间。#最后使用 kubectl config use-context default 来使用名为 default 的环境项来作为配置。 如果配置了多个环
境项,可以通过切换不同的环境项名字来访问到不同的集群环境。
#########################################################

执行脚本:

查看文件:

过kubectl工具查看当前集群组件状态:

kubectl get cs

查看版本信息:

kubectl version

绑定默认cluster-admin管理员集群角色,授权kubectl访问集群:

kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous

 部署 Worker Node 组件:

在所有 node 节点上操作30,40:

创建kubernetes工作目录:

mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}

上传 node.zip 到 /opt 目录中,解压 node.zip 压缩包:

#!/bin/bashNODE_ADDRESS=$1
DNS_SERVER_IP=${2:-"10.0.0.2"}
cat >/opt/kubernetes/cfg/kubelet <<EOF
KUBELET_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--hostname-override=node01 \\
--network-plugin=cni \\
--kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \\
--bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \\
--config=/opt/kubernetes/cfg/kubelet.config \\
--cert-dir=/opt/kubernetes/ssl \\
--pod-infra-container-image=registry.cn-hangzhou.aliyuncs.com/google_containers/pause-amd64:3.2"
EOF#--network-plugin:启用CNI
#--bootstrap-kubeconfig:指定连接 apiserver 的 bootstrap.kubeconfig 文件
#--config:指定kubelet配置文件的路径,启动kubelet时将从此文件加载其配置
#--cert-dir:指定master颁发的kubelet证书生成目录#----------------------
cat >/opt/kubernetes/cfg/kubelet.config <<EOF
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
address: ${NODE_ADDRESS}
port: 10250
readOnlyPort: 10255
cgroupDriver: systemd
clusterDNS:
- ${DNS_SERVER_IP} 
clusterDomain: cluster.local
failSwapOn: false
authentication:anonymous:enabled: true
EOF#PS:当命令行参数与此配置文件(kubelet.config)有相同的值时,就会覆盖配置文件中的该值。#----------------------
#创建 kubelet.service 服务管理文件
cat >/usr/lib/systemd/system/kubelet.service <<EOF
[Unit]
Description=Kubernetes Kubelet
After=docker.service
Requires=docker.service[Service]
EnvironmentFile=/opt/kubernetes/cfg/kubelet
ExecStart=/opt/kubernetes/bin/kubelet \$KUBELET_OPTS
Restart=on-failure
KillMode=process[Install]
WantedBy=multi-user.target
EOFsystemctl daemon-reload
systemctl enable kubelet
systemctl restart kubelet

#!/bin/bashNODE_ADDRESS=$1#创建 kube-proxy 启动参数配置文件
cat >/opt/kubernetes/cfg/kube-proxy <<EOF
KUBE_PROXY_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--hostname-override=${NODE_ADDRESS} \\
--cluster-cidr=10.244.0.0/16 \\
--proxy-mode=ipvs \\
--kubeconfig=/opt/kubernetes/cfg/kube-proxy.kubeconfig"
EOF#--kubeconfig: 指定连接 apiserver 的 kubeconfig 文件
#rr: round-robin,轮询。
#lc: least connection,最小连接数。
#dh: destination hashing,目的地址哈希。
#sh: source hashing ,原地址哈希。
#sed: shortest expected delay,最短期望延时。
#nq: never queue ,永不排队。#----------------------
#创建 kube-proxy.service 服务管理文件
cat >/usr/lib/systemd/system/kube-proxy.service <<EOF
[Unit]
Description=Kubernetes Proxy
After=network.target[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-proxy
ExecStart=/opt/kubernetes/bin/kube-proxy \$KUBE_PROXY_OPTS
Restart=on-failure[Install]
WantedBy=multi-user.target
EOFsystemctl daemon-reload
systemctl enable kube-proxy
systemctl restart kube-proxy

#!/bin/bashNODE_ADDRESS=$1
#创建 kubelet 启动参数配置文件
cat >/opt/kubernetes/cfg/kubelet <<EOF
KUBELET_OPTS="--logtostderr=false \\
--hostname-override=node02 \\
--network-plugin=cni \\
--kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \\
--bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \\
--config=/opt/kubernetes/cfg/kubelet.config \\
--cert-dir=/opt/kubernetes/ssl \\
--pod-infra-container-image=registry.cn-hangzhou.aliyuncs.com/google_containers/pause-amd64:3.2"
EOF#--network-plugin:启用CNI
#--bootstrap-kubeconfig:指定连接 apiserver 的 bootstrap.kubeconfig 文件
#--config:指定kubelet配置文件的路径,启动kubelet时将从此文件加载其配置
#--cert-dir:指定master颁发的kubelet证书生成目录#----------------------
cat >/opt/kubernetes/cfg/kubelet.config <<EOF
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
address: ${NODE_ADDRESS}
port: 10250
readOnlyPort: 10255
cgroupDriver: systemd
clusterDNS:
- ${DNS_SERVER_IP} 
clusterDomain: cluster.local
failSwapOn: false
authentication:anonymous:enabled: true
EOF#PS:当命令行参数与此配置文件(kubelet.config)有相同的值时,就会覆盖配置文件中的该值。#----------------------
#创建 kubelet.service 服务管理文件
cat >/usr/lib/systemd/system/kubelet.service <<EOF
[Unit]
Description=Kubernetes Kubelet
After=docker.service
Requires=docker.service[Service]
EnvironmentFile=/opt/kubernetes/cfg/kubelet
ExecStart=/opt/kubernetes/bin/kubelet \$KUBELET_OPTS
Restart=on-failure
KillMode=process[Install]
WantedBy=multi-user.target
EOFsystemctl daemon-reload
systemctl enable kubelet
systemctl restart kubelet

#!/bin/bashNODE_ADDRESS=$1#创建 kube-proxy 启动参数配置文件
cat >/opt/kubernetes/cfg/kube-proxy <<EOF
KUBE_PROXY_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--hostname-override=${NODE_ADDRESS} \\
--cluster-cidr=10.244.0.0/16 \\
--proxy-mode=ipvs \\
--kubeconfig=/opt/kubernetes/cfg/kube-proxy.kubeconfig"
EOF#--kubeconfig: 指定连接 apiserver 的 kubeconfig 文件
#rr: round-robin,轮询。
#lc: least connection,最小连接数。
#dh: destination hashing,目的地址哈希。
#sh: source hashing ,原地址哈希。
#sed: shortest expected delay,最短期望延时。
#nq: never queue ,永不排队。#----------------------
#创建 kube-proxy.service 服务管理文件
cat >/usr/lib/systemd/system/kube-proxy.service <<EOF
[Unit]
Description=Kubernetes Proxy
After=network.target[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-proxy
ExecStart=/opt/kubernetes/bin/kube-proxy \$KUBE_PROXY_OPTS
Restart=on-failure[Install]
WantedBy=multi-user.target
EOFsystemctl daemon-reload
systemctl enable kube-proxy
systemctl restart kube-proxy

授权:

在 master01 节点上操作:

把 kubelet、kube-proxy 拷贝到 node 节点;

cd /opt/k8s/kubernetes/server/bin

scp kubelet kube-proxy root@192.168.233.30:/opt/kubernetes/bin/
scp kubelet kube-proxy root@192.168.233.40:/opt/kubernetes/bin/

上传kubeconfig.sh文件到/opt/k8s/kubeconfig目录中:

#!/bin/bash
#example: kubeconfig 192.168.233.10 /opt/k8s/k8s-cert/
#创建bootstrap.kubeconfig文件BOOTSTRAP_TOKEN=$(awk -F ',' '{print $1}' /opt/kubernetes/cfg/token.csv)
APISERVER=$1
SSL_DIR=$2export KUBE_APISERVER="https://$APISERVER:6443"# 设置集群参数
kubectl config set-cluster kubernetes \--certificate-authority=$SSL_DIR/ca.pem \--embed-certs=true \--server=${KUBE_APISERVER} \--kubeconfig=bootstrap.kubeconfig
#--embed-certs=true:表示将ca.pem证书写入到生成的bootstrap.kubeconfig文件中# 设置客户端认证参数,kubelet 使用 bootstrap token 认证
kubectl config set-credentials kubelet-bootstrap \--token=${BOOTSTRAP_TOKEN} \--kubeconfig=bootstrap.kubeconfig# 设置上下文参数
kubectl config set-context default \--cluster=kubernetes \--user=kubelet-bootstrap \--kubeconfig=bootstrap.kubeconfig# 使用上下文参数生成 bootstrap.kubeconfig 文件
kubectl config use-context default --kubeconfig=bootstrap.kubeconfig#----------------------#创建kube-proxy.kubeconfig文件
# 设置集群参数
kubectl config set-cluster kubernetes \--certificate-authority=$SSL_DIR/ca.pem \--embed-certs=true \--server=${KUBE_APISERVER} \--kubeconfig=kube-proxy.kubeconfig# 设置客户端认证参数,kube-proxy 使用 TLS 证书认证
kubectl config set-credentials kube-proxy \--client-certificate=$SSL_DIR/kube-proxy.pem \--client-key=$SSL_DIR/kube-proxy-key.pem \--embed-certs=true \--kubeconfig=kube-proxy.kubeconfig# 设置上下文参数
kubectl config set-context default \--cluster=kubernetes \--user=kube-proxy \--kubeconfig=kube-proxy.kubeconfig# 使用上下文参数生成 kube-proxy.kubeconfig 文件
kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
授权,执行脚本:

chmod +x kubeconfig.sh

./kubeconfig.sh 192.168.233.10 /opt/k8s/k8s-cert/

把配置文件 bootstrap.kubeconfig、kube-proxy.kubeconfig 拷贝到 node 节点:

scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.233.30:/opt/kubernetes/cfg/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.233.40:/opt/kubernetes/cfg/

查看一下:

RBAC授权,使用户 kubelet-bootstrap 能够有权限发起 CSR 请求证书:

kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap

master节点启动 kubelet 服务:

在 master01 节点上操作,通过 CSR 请求:

通过 CSR 请求:

kubectl certificate approve node-csr-vH5p3H5QliAUh9WjCnwXPDb84pFhcj-FrHiTIRDeeU8

Approved,Issued 表示已授权 CSR 请求并签发证书:

查看节点,由于网络插件还没有部署,节点会没有准备就绪 NotReady:

kubectl get node

在 node01 节点上操作:

加载 ip_vs 模块:

ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs

for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

启动proxy服务:

./proxy.sh 192.168.233.30

master节点:

node02上启动kubelet:

master节点通过 CSR 请求:

node02上启动proxy:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/262087.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【前端素材】推荐优质后台管理系统inspina平台模板(附源码)

一、需求分析 后台管理系统是一个集成了多种功能模块的系统&#xff0c;通过这些模块的协同工作&#xff0c;实现对网站、应用程序或系统的全面管理和控制。管理员通过后台管理系统可以高效地管理用户、内容、数据、权限等方面的工作&#xff0c;确保系统的正常运行和安全性。…

软件压力测试:测试方法与步骤详解

随着软件应用的不断发展&#xff0c;用户对系统性能的要求也逐渐提高。在不同的负载条件下&#xff0c;系统必须能够保持稳定、高效的运行。软件压力测试是一种验证系统在各种负载情况下性能表现的关键手段。本文将详细探讨软件压力测试的方法和步骤。 1. 明确测试目标 在进行压…

error: src refspec main does not match any解决办法

一、问题描述&#xff1a; 用GitHub Actions自动部署Hexo&#xff0c;到了最关键的一步&#xff1b;突然报错&#xff1a;error: src refspec main does not match any 1、错误一&#xff1a; main分支应填写为master分支&#xff1b;但是只改这里也会报其他错误 2、错误二&a…

关于运行flutter app 运行到模拟器出现异常提示

Exception: Gradle task assembleDebug failed with exit code 1 解决方案&#xff1a; 1.讲当前文件的distributionUrl值改为 https://mirrors.cloud.tencent.com/gradle/gradle-7.4-all.zip

C++模板从入门到入土

1. 泛型编程 如果我们需要实现一个不同类型的交换函数&#xff0c;如果是学的C语言&#xff0c;你要交换哪些类型&#xff0c;不同的类型就需要重新写一个来实现&#xff0c;所以这是很麻烦的&#xff0c;虽然可以cv一下&#xff0c;有了模板就可以减轻负担。 下面写一个适…

【C深剖】typedef关键字

简介&#xff1a;本系列博客为C深度解剖系列内容&#xff0c;以某个点为中心进行相关详细拓展 适宜人群&#xff1a;已大体了解C语法同学 作者留言&#xff1a;本博客相关内容如需转载请注明出处&#xff0c;本人学疏才浅&#xff0c;难免存在些许错误&#xff0c;望留言指正 作…

Photoshop 2023(Ps)下载安装及详细安装教程

Photoshop(Ps)的介绍 Adobe Photoshop&#xff0c;简称“PS”&#xff0c;是由AdobeSystems开发和发行的图像处理软件。Photoshop主要处理以像素所构成的数字图像。使用其众多的编修与绘图工具&#xff0c;可以有效地进行图片编辑和创造工作。PS有很多功能&#xff0c;在图像、…

贷齐乐系统最新版SQL注入(无需登录绕过WAF可union select跨表查询)

一、环境 已上传资源&#xff08;daiqile&#xff09; 二、代码解释 1.1Request 不管get请求还是post请求都可以接收到 1.2过滤的还挺多 1.3第二个WAF把数据分为两个了一个Key一个value&#xff0c;全是explode的功劳 1.4submit是if进入的前提 很明显走进来了 1.5那我们在这…

【Python笔记-设计模式】装饰器模式

一、说明 装饰器模式是一种结构型设计模式&#xff0c;旨在动态的给一个对象添加额外的职责。 (一) 解决问题 不改变原有对象结构的情况下&#xff0c;动态地给对象添加新的功能或职责&#xff0c;实现透明地对对象进行功能的扩展。 (二) 使用场景 如果用继承来扩展对象行…

隐藏饿了么el-select组件的el-select-dropdown部分,只使用el-select的显示框

隐藏饿了么el-select组件的el-select-dropdown部分,只使用el-select的显示框 问题: 由于el-select组件的el-select-dropdown部分是自动插入在最外层Body上的&#xff0c;所以在当前组件的scoped中让el-select-dropdown组件display:none不会生效所以需要&#xff1a; :popper-…

网页403错误(Spring Security报异常 Encoded password does not look like BCrypt)

这个错误通常表现为"403 Forbidden"或"HTTP Status 403"&#xff0c;它指的是访问资源被服务器理解但拒绝授权。换句话说&#xff0c;服务器可以理解你请求看到的页面&#xff0c;但它拒绝给你权限。 也就是说很可能测试给定的参数有问题&#xff0c;后端…

Excel图表 - 条形图误差线组合

首先为了方便展示&#xff0c;我们将元素种类列进行一下汇总显示 1、在AB列之间插入一列&#xff0c;输入函数IF(A2A1,“”,A2)&#xff0c;这样我们就可以把同类名称的只显示一个名称&#xff0c;方便后续图表展示 2、选中BCD列插入一个条形图 3、然后加3列辅助列&#xff…

一种基于动态水位值的Flink调度优化算法(flink1.5以前),等同于实现flink的Credit-based反压原理

优化flink反压 说明1 flink反压介绍1.1 介绍1.2 大数据系统反压现状1.4 flink task与task之间的反压1.5 netty水位机制作用分析 2 反压优化算法3 重点&#xff01; 但是 可但是 flink1.5以后的反压过程。4 flink反压问题的查找瓶颈办法 说明 首先说明&#xff0c;偶然看了个论…

电脑录屏软件哪个好用?实测告诉你答案(2024年最新)

在当今信息化快速发展的时代&#xff0c;无论是录制在线课程、游戏操作&#xff0c;还是制作教程、会议记录&#xff0c;一款电脑录屏软件显得尤为重要&#xff0c;可是电脑录屏软件哪个好用呢&#xff1f;本文将介绍三款主流的电脑录屏软件&#xff0c;通过分步骤详细讲述&…

(提供数据集下载)基于大语言模型LangChain与ChatGLM3-6B本地知识库调优:数据集优化、参数调整、Prompt提示词优化实战

文章目录 &#xff08;提供数据集下载&#xff09;基于大语言模型LangChain与ChatGLM3-6B本地知识库调优&#xff1a;数据集优化、参数调整、提示词Prompt优化本地知识库目标操作步骤问答测试的预设问题原始数据情况数据集优化&#xff1a;预处理&#xff0c;先后准备了三份数据…

CMD命令大全

CMD命令&#xff1a;开始&#xff0d;>运行&#xff0d;>键入cmd或command&#xff08;在命令行里可以看到系统版本、文件系统版本&#xff09; appwiz.cpl&#xff1a;程序和功能calc&#xff1a;启动计算器certmgr.msc&#xff1a;证书管理实用程序charmap&#xff1a…

stable diffusion官方版本复现

踩了一些坑&#xff0c;来记录下 环境 CentOS Linux release 7.5.1804 (Core) 服务器RTX 3090 复现流程 按照Stable Diffusion的readme下载模型权重、我下载的是stable-diffusion-v1-4 版本的 1 因为服务器没法上huggingface&#xff0c;所以得把权重下载到本地&#xff…

[HTML]Web前端开发技术27(HTML5、CSS3、JavaScript )JavaScript基础——喵喵画网页

希望你开心&#xff0c;希望你健康&#xff0c;希望你幸福&#xff0c;希望你点赞&#xff01; 最后的最后&#xff0c;关注喵&#xff0c;关注喵&#xff0c;关注喵&#xff0c;佬佬会看到更多有趣的博客哦&#xff01;&#xff01;&#xff01; 喵喵喵&#xff0c;你对我真的…

【鸿蒙 HarmonyOS 4.0】ArkTS开发语言

一、背景 ArkTS是HarmonyOS优选的主力应用开发语言。ArkTS围绕应用开发在TypeScript&#xff08;简称TS&#xff09;生态基础上做了进一步扩展&#xff0c;继承了TS的所有特性&#xff0c;是TS的超集。 二、基本语法 2.1、基本语法介绍 ArkTS的基本组成&#xff0c;资料来自…

TiDB 7.5.0 LTS 高性能数据批处理方案

过去&#xff0c;TiDB 由于不支持存储过程、大事务的使用也存在一些限制&#xff0c;使得在 TiDB 上进行一些复杂的数据批量处理变得比较复杂。 TiDB 在面向这种超大规模数据的批处理场景&#xff0c;其能力也一直在演进&#xff0c;其复杂度也变得越来越低&#xff1a; ○ 从…