压缩感知常用的测量矩阵

测量矩阵的基本概念

在压缩感知(Compressed Sensing,CS)理论中,测量矩阵(也称为采样矩阵)是实现信号压缩采样的关键工具。它是一个通常为非方阵的矩阵,用于将信号从高维空间映射到低维空间,生成观测向量。如果信号在某个基下是稀疏的,那么通过与测量矩阵相乘,可以得到它的压缩表示。

测量矩阵的作用

测量矩阵的主要作用是从原始高维信号中提取出足够的信息,以便于后续能够从这些较少的信息中准确恢复原信号。理想的测量矩阵应满足两个重要条件:一是与稀疏基正交(或近似正交),称为“不相干性”;二是具有良好的“限制等距性质”(Restricted Isometry Property,RIP),以确保所有稀疏信号的结构得到保留。

测量矩阵的使用形式

测量矩阵的形式和结构多种多样,但它们都需要满足上述两个条件。在实际应用中,一般希望测量矩阵能够容易实现和计算,并且有助于稀疏信号的重构。

常见的测量矩阵

  1. 随机高斯矩阵

    • 随机高斯矩阵的元素由独立同分布的高斯随机变量组成。它们的不相干性很好,并且以高概率满足RIP条件。
  2. 随机伯努利矩阵

    • 随机伯努利矩阵的元素取1和-1的概率均为1/2。伯努利矩阵也具备良好的不相干性和RIP条件。
  3. 随机傅里叶矩阵

    • 随机傅里叶矩阵是从完整的离散傅里叶变换(DFT)矩阵中随机选取若干行构成的矩阵。它适用于信号在傅里叶基下稀疏或压缩的情况。
  4. 随机小波矩阵

    • 随机小波矩阵类似于随机傅里叶矩阵,不同之处在于它是从完整的小波变换矩阵中随机选取行。
  5. 有限差分矩阵

    • 有限差分矩阵通常用于图像压缩感知,它通过计算像素之间的差值来构造测量。
  6. 结构化随机矩阵

    • 结构化随机矩阵是指具有特定结构的随机矩阵,例如Toeplitz矩阵和循环矩阵。这些矩阵虽然随机,但由于其结构化特性,它们在存储和计算上更加高效。

研究测量矩阵的重要性

选择或设计合适的测量矩阵对于压缩感知的性能至关重要。一个好的测量矩阵可以极大地提高信号重构的准确性和稳定性,同时降低计算复杂度。研究者们一直在探索更多种类的测量矩阵,并分析它们的理论性质和实际应用效果。

结论

总的来说,在压缩感知中,测量矩阵扮演着至关重要的角色,它决定了信号采样的效率和重构的质量。随机高斯矩阵、随机伯努利矩阵、随机傅里叶矩阵、随机小波矩阵以及结构化随机矩阵等都是目前常用的测量矩阵类型。在选择测量矩阵时,不仅要考虑理论上的性能,还要关注其在实际系统中的可实现性和计算效率。未来的研究将继续在理论和实践中寻求最优的测量矩阵,以推动压缩感知技术的进步和应用。

相关博文

理解并实现OpenCV中的图像平滑技术

OpenCV中的边缘检测技术及实现

OpenCV识别人脸案例实战

入门OpenCV:图像阈值处理

我的图书

下面两本书欢迎大家参考学习。

OpenCV轻松入门

李立宗,OpenCV轻松入门,电子工业出版社,2023
本书基于面向 Python 的 OpenCV(OpenCV for Python),介绍了图像处理的方方面面。本书以 OpenCV 官方文档的知识脉络为主线,并对细节进行补充和说明。书中不仅介绍了 OpenCV 函数的使用方法,还介绍了函数实现的算法原理。

在介绍 OpenCV 函数的使用方法时,提供了大量的程序示例,并以循序渐进的方式展开。首先,直观地展示函数在易于观察的小数组上的使用方法、处理过程、运行结果,方便读者更深入地理解函数的原理、使用方法、运行机制、处理结果。在此基础上,进一步介绍如何更好地使用函数处理图像。在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的实例来说明问题,避免使用过多复杂抽象的公式。

本书适合计算机视觉领域的初学者阅读,包括在校学生、教师、专业技术人员、图像处理爱好者。
本书第1版出版后,深受广大读者朋友的喜爱,被很多高校选为教材,目前已经累计重印9次。为了更好地方便大家学习,对本书进行了修订。
在这里插入图片描述

计算机视觉40例

李立宗,计算机视觉40例,电子工业出版社,2022
近年来,我深耕计算机视觉领域的课程研发工作,在该领域尤其是OpenCV-Python方面积累了一点儿经验。因此,我经常会收到该领域相关知识点的咨询,内容涵盖图像处理的基础知识、OpenCV工具的使用、深度学习的具体应用等多个方面。为了更好地把所积累的知识以图文的形式分享给大家,我将该领域内的知识点进行了系统的整理,编写了本书。希望本书的内容能够对大家在计算机视觉方向的学习有所帮助。
本书以OpenCV-Python(the Python API for OpenCV)为工具,以案例为载体,系统介绍了计算机视觉从入门到深度学习的相关知识点。
本书从计算机视觉基础、经典案例、机器学习、深度学习、人脸识别应用等五个方面对计算机视觉的相关知识点做了全面、系统、深入的介绍。书中共介绍了40余个经典的计算机视觉案例,其中既有字符识别、信息加密、指纹识别、车牌识别、次品检测等计算机视觉的经典案例,也包含图像分类、目标检测、语义分割、实例分割、风格迁移、姿势识别等基于深度学习的计算机视觉案例,还包括表情识别、驾驶员疲劳监测、易容术、识别年龄和性别等针对人脸的应用案例。
在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的示例来说明问题,避免使用复杂抽象的公式来介绍。
本书适合计算机视觉领域的初学者阅读,适于在校学生、教师、专业技术人员、图像处理爱好者使用。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/263704.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二蛋赠书十六期:《高效使用Redis:一书学透数据存储与高可用集群》

很多人都遇到过这么一道面试题:Redis是单线程还是多线程?这个问题既简单又复杂。说他简单是因为大多数人都知道Redis是单线程,说复杂是因为这个答案其实并不准确。 难道Redis不是单线程?我们启动一个Redis实例,验证一…

深度学习系列59:文字识别

1. 简单文本: 使用google加的tesseract,效果不错。 首先安装tesseract,在mac直接brew install即可。 python调用代码: import pytesseract from PIL import Image img Image.open(1.png) pytesseract.image_to_string(img, lan…

【算法与数据结构】1971、LeetCode寻找图中是否存在路径

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析:本题应用并查集的理论直接就可以解决:【算法与数据结构】回溯算法、贪心算法、动态规划、图…

相机图像质量研究(35)常见问题总结:图像处理对成像的影响--运动噪声

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结:光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结:光学结构对成…

Oracle迁移到mysql-表结构的坑

1.mysql中id自增字段必须是整数类型 id BIGINT AUTO_INCREMENT not null, 2.VARCHAR2改为VARCHAR 3.NUMBER(16)改为decimal(16,0) 4.date改为datetime 5.mysql范围分区必须int格式,不能list类型 ERROR 1697 (HY000): VALUES value for partition …

为什么在MOS管开关电路设计中使用三极管容易烧坏?

MOS管作为一种常用的开关元件,具有低导通电阻、高开关速度和低功耗等优点,因此在许多电子设备中广泛应用。然而,在一些特殊情况下,我们需要在MOS管控制电路中加入三极管来实现一些特殊功能。然而,不同于MOS管&#xff…

redis的缓存穿透,缓存并发,缓存雪崩,缓存问题及解决方案

缓存穿透 问题原因 解决方案 缓存并发 缓存雪崩 缓存失效时间设置一致导致的。 解决方案: 1)方案一 2)方案二 如何设计一个缓存策略,缓存热点数据?

网卡本质,网络发展(局域网,广域网概念)

目录 引入 网卡的本质 网络的发展 引入 早期 局域网LAN(Local Area Network) 广域网WAN(Wide Area Network) 注意 引入 前面我们已经学习了很多关于linux系统的知识,其中文件系统和线程尤为繁杂 而网络其实也算系统的一部…

C/C++暴力/枚举/穷举题目持续更新(刷蓝桥杯基础题的进!)

目录 前言 一、百钱买百鸡 二、百元兑钞 三、门牌号码(蓝桥杯真题) 四、相乘(蓝桥杯真题) 五、卡片拼数字(蓝桥杯真题) 六、货物摆放(蓝桥杯真题) 七、最短路径(蓝…

Day20_网络编程(软件结构,网络编程三要素,UDP网络编程,TCP网络编程)

文章目录 Day20 网络编程学习目标1 软件结构2 网络编程三要素2.1 IP地址和域名1、IP地址2、域名3、InetAddress类 2.2 端口号2.3 网络通信协议1、OSI参考模型和TCP/IP参考模型2、UDP协议3、TCP协议 2.4 Socket编程 3 UDP网络编程3.1 DatagramSocket和DatagramPacket1、Datagram…

【Android安全】Windows 环境下载 AOSP 源码

准备环境 安装 git 安装 Python 硬盘剩余容量最好大于 100G 打开 Git Bash,用 git 克隆源代码仓库 git clone https://android.googlesource.com/platform/manifest.git //没有梯子使用清华源 git clone https://aosp.tuna.tsinghua.edu.cn/platform/manifest.git…

fastApi笔记04-查询参数和字符串校验

额外校验 使用Query可以对查询参数添加校验 from typing import Unionfrom fastapi import FastAPI, Queryapp FastAPI()app.get("/items/") async def read_items(q: Union[str, None] Query(defaultNone, max_length50)):results {"items": [{"…

迅速了解Ascii、GBK、Unicode、UTF-8、BCD各种编码格式的由来及关系!

《嵌入式工程师自我修养/C语言》系列——迅速了解Ascii、GBK、Unicode、UTF-8、BCD各种编码格式的由来及关系 一、Ascii编码二、GBK编码三、Unicode编码四、UTF-8编码五、BCD编码六、其他网友的总结 快速学习嵌入式开发其他基础知识?>>>>>>>&g…

简单mock server模拟用户请求给小程序提供数据

整理小程序代码时发现一此小程序离开了mock-server基本上没有办法显示了,因此用node,express来满足给小程序提供演示数据的功能 const express require(express); const { createCanvas, Image } require(canvas); const fs require(fs); const path require(path);…

解锁苏宁电商数据新纪元:关键字搜索API接口引领业务升级

苏宁关键字搜索API接口:电商数据探索的新篇章 一、引言 在电商领域,数据的重要性不言而喻。为了帮助开发者更高效地获取和利用电商数据,苏宁开放平台提供了关键字搜索API接口。本文将带你深入了解这一接口的技术细节,让你在电商…

消息队列-RabbitMQ:延迟队列、rabbitmq 插件方式实现延迟队列、整合SpringBoot

十六、延迟队列 1、延迟队列概念 延时队列内部是有序的,最重要的特性就体现在它的延时属性上,延时队列中的元素是希望在指定时间到了以后或之前取出和处理,简单来说,延时队列就是用来存放需要在指定时间被处理的元素的队列。 延…

惠尔顿 网络安全审计系统 任意文件读取漏洞复现

0x01 产品简介 惠尔顿网络安全审计产品致力于满足军工四证、军工保密室建设、国家涉密网络建设的审计要求,规范网络行为,满足国家的规范;支持1-3线路的internet接入、1-3对网桥;含强大的上网行为管理、审计、监控模块&#xff1b…

【C++】哈希表底层结构剖析

unordered系列底层结构 unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。 哈希概念 顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比…

linux---安使用nginx

目录 一、编译安装Nginx 1、关闭防火墙,将安装nginx所需要软件包传到/opt目录下 ​编辑2、安装依赖包 3、创建运行用户、组 4、编译安装nginx 5、创建软链接后直接nginx启动 ​编辑 6、创建nginx自启动文件 ​编辑6.1 重新加载配置、设置开机自启并开启服务…

GoLand 相关

goland 下载依赖 go mod tidy:保持依赖整洁 go mod tidy 命令的作用是清理未使用的依赖,并更新 go.mod 以及 go.sum 文件。 go mod tidy 和 go mod vendor 两个命令是维护项目依赖不可或缺的工具。go mod tidy 确保了项目的 go.mod 文件精简且准确&…