11-pytorch-使用自己的数据集测试

b站小土堆pytorch教程学习笔记

在这里插入图片描述

import torch
import torchvision
from PIL import Image
from torch import nnimg_path= '../imgs/dog.png'
image=Image.open(img_path)
print(image)
# image=image.convert('RGB')transform=torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),torchvision.transforms.ToTensor()])
image=transform(image)
print(image.shape)#加载模型
class Han(nn.Module):def __init__(self):super(Han, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 32, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(2),nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64 * 4 * 4, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return xmodel=torch.load('../han_9.pth',map_location=torch.device('cpu'))#将GPU上运行的模型转移到CPU
print(model)#对图片进行reshap
image=torch.reshape(image,(-1,3,32,32))#将模型转化为测试类型
model.eval()
with torch.no_grad():#节约内存output=model(image)
print(output)print(output.argmax(1))

<PIL.PngImagePlugin.PngImageFile image mode=RGB size=306x283 at 0x250B0006EE0>
torch.Size([3, 32, 32])
Han(
(model): Sequential(
(0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=1024, out_features=64, bias=True)
(8): Linear(in_features=64, out_features=10, bias=True)
)
)
tensor([[-2.0302, -0.6256, 0.7483, 1.5765, 0.2651, 2.2243, -0.7037, -0.5262,
-1.4401, -0.6563]])
tensor([5])
Process finished with exit code 0

预测正确!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/264894.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式(六)代理模式

相关文章设计模式系列 1.代理模式简介 代理模式介绍 代理模式也叫委托模式&#xff0c;是结构型设计模式的一种。在现实生活中我们用到类似代理模式的场景有很多&#xff0c;比如代购、代理上网、打官司等。 定义 为其他对象提供一种代理以控制这个对象的访问。 代理模式…

Nginx——安装和反向代理

Nginx安装与应用 1.1 Nginx介绍 Nginx 是一个高性能的HTTP和反向代理服务器,特点是占有内存少&#xff0c;并发能力强 Nginx可以作为静态页面的web服务器&#xff0c;同时还支持CGI协议的动态语言&#xff0c;比如perl、php等。但是不支持java。Java程序只能通过与tomcat配合…

云原生之容器编排实践-ruoyi-cloud项目部署到K8S:MySQL8

背景 前面搭建好了 Kubernetes 集群与私有镜像仓库&#xff0c;终于要进入服务编排的实践环节了。本系列拿 ruoyi-cloud 项目进行练手&#xff0c;按照 MySQL &#xff0c; Nacos &#xff0c; Redis &#xff0c; Nginx &#xff0c; Gateway &#xff0c; Auth &#xff0c;…

AMRT3D数字孪生引擎详解

AMRT 3D数字孪生引擎介绍 AMRT3D引擎是一款融合了眸瑞科技的AMRT格式与轻量化处理技术为基础&#xff0c;以降本增效为目标&#xff0c;支持多端发布的一站式纯国产自研的CS架构项目开发引擎。 引擎包括场景搭建、UI拼搭、零代码交互事件、光影特效组件、GIS/BIM组件、实时数据…

跨越千年医学对话:用AI技术解锁中医古籍知识,构建能够精准问答的智能语言模型,成就专业级古籍解读助手(LLAMA)

跨越千年医学对话&#xff1a;用AI技术解锁中医古籍知识&#xff0c;构建能够精准问答的智能语言模型&#xff0c;成就专业级古籍解读助手&#xff08;LLAMA&#xff09; 介绍&#xff1a;首先在 Ziya-LLaMA-13B-V1基线模型的基础上加入中医教材、中医各类网站数据等语料库&am…

科技云报道:黑马Groq单挑英伟达,AI芯片要变天?

科技云报道原创。 近一周来&#xff0c;大模型领域重磅产品接连推出&#xff1a;OpenAI发布“文字生视频”大模型Sora&#xff1b;Meta发布视频预测大模型 V-JEPA&#xff1b;谷歌发布大模型 Gemini 1.5 Pro&#xff0c;更毫无预兆地发布了开源模型Gemma… 难怪网友们感叹&am…

vue3 + vite + ts 中使用less文件全局变量

文章目录 安装依赖新建css变量文件全局引入css变量文件使用css变量 一、安装依赖 npm install less less-loader --save-dev 二、新建CSS变量文件 (1) :在根目录下的src文件中 src-> asset -> css ->glibal.less // glibal.less :root{--public_background_font_Col…

基于YOLOv8深度学习+Pyqt5的电动车头盔佩戴检测系统

wx供重浩&#xff1a;创享日记 对话框发送&#xff1a;225头盔 获取完整源码源文件已标注的数据集&#xff08;1463张&#xff09;源码各文件说明配置跑通说明文档 若需要一对一远程操作在你电脑跑通&#xff0c;有偿59yuan 效果展示 基于YOLOv8深度学习PyQT5的电动车头盔佩戴检…

C语言第三十一弹---自定义类型:结构体(下)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 目录 1、结构体内存对齐 1.1、为什么存在内存对齐? 1.2、修改默认对齐数 2、结构体传参 3、结构体实现位段 3.1、什么是位段 3.2、位段的内存分配 3.3、…

论文精读--GPT3

不像GPT2一样追求zero-shot&#xff0c;而换成了few-shot Abstract Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnos…

EMQX Enterprise 5.5 发布:新增 Elasticsearch 数据集成

EMQX Enterprise 5.5.0 版本已正式发布&#xff01; 在这个版本中&#xff0c;我们引入了一系列新的功能和改进&#xff0c;包括对 Elasticsearch 的集成、Apache IoTDB 和 OpenTSDB 数据集成优化、授权缓存支持排除主题等功能。此外&#xff0c;新版本还进行了多项改进以及 B…

多模态表征—CLIP及中文版Chinese-CLIP:理论讲解、代码微调与论文阅读

我之前一直在使用CLIP/Chinese-CLIP&#xff0c;但并未进行过系统的疏导。这次正好可以详细解释一下。相比于CLIP模型&#xff0c;Chinese-CLIP更适合我们的应用和微调&#xff0c;因为原始的CLIP模型只支持英文&#xff0c;对于我们的中文应用来说不够友好。Chinese-CLIP很好地…

unity发布webGL压缩方式的gzip,使用nginx作为web服务器时的配置文件

unity发布webGL压缩方式的gzip&#xff0c;使用nginx作为web服务器时的配置文件 Unity版本是&#xff1a;2021.3 nginx的版本是&#xff1a;nginx-1.25.4 Unity发布webgl时的测试 设置压缩方式是gzip nginx配置文件 worker_processes 1;events {worker_connections 102…

Linux系统——Nginx小总结

目录 一、影响用户体验的因素 二、网络连接——Apache/Nginx服务请求过程 三、I/O模型——Input/Output模型 1.同步/异步 2.阻塞/非阻塞 3.同步异步/阻塞非阻塞组合 四、Nginx用法 一、影响用户体验的因素 客户端硬件配置客户端网络速率客户端与服务端距离服务端网络速…

SQLlabs46关

看看源码 最终我们的id是放到order by后面了 如果我们直接用列去排序 ?sortusername/password username&#xff1a; passward 可以看到顺序是不同的&#xff0c;当然第一列第二列第三列也可以&#xff0c;基本上都是这个原理&#xff0c;那怎么去实现注入呢&#xff0c;我…

Rider 2023:打造高效.NET项目的智能IDE,让开发更简单mac/win版

JetBrains Rider 2023激活版下载是一款专为.NET开发者打造的强大集成开发环境&#xff08;IDE&#xff09;。这款IDE提供了丰富的功能&#xff0c;旨在帮助开发者更快速、更高效地编写、调试和测试.NET应用程序。 Rider 2023 软件获取 Rider 2023在保持了其一贯的智能代码补全…

Git笔记——3

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言 一、合并模式和分支策略 二、bug分支 三、强制删除分支 四、创建远程仓库 五、克隆远程仓库_HTTPS和_SSH 克隆远程仓库_HTTPS 克隆远程仓库_SSH 六、向远程仓库…

1.1_1 计算机网络的概念、功能、组成和分类

文章目录 1.1_1 计算机网络的概念、功能、组成和分类&#xff08;一&#xff09;计算机网络的概念&#xff08;二&#xff09;计算机网络的功能&#xff08;三&#xff09;计算机网络的组成1.组成部分2.工作方式3.功能组成 &#xff08;四&#xff09;计算机网络的分类 总结 1.…

Qt QWidget 简约美观的加载动画 第五季 - 小方块风格

给大家分享两个小方块风格的加载动画 &#x1f60a; 第五季来啦 &#x1f60a; 效果如下: 一个三个文件,可以直接编译运行 //main.cpp #include "LoadingAnimWidget.h" #include <QApplication> #include <QGridLayout> int main(int argc, char *arg…

sql-labs第46关 order by盲注

sql-labs第46关 order by盲注 来到了第46关进入关卡发现让我们输入的参数为sort&#xff0c;我们输入?sort1尝试&#xff1a; 输入?sort2,3,发现表格按照顺序进行排列输出&#xff0c;明显是使用了order by相关的函数。 我们将参数变成1进行尝试&#xff0c;就会报错&…