【OpenGL的着色器03】内置变量(gl_Position等)

目录

一、说明

二、着色器的变量

2.1 着色器变量

2.2 着色器内置变量

三、最常见内置变量使用范例

3.1 常见着色器变量

3.2 示例1: gl_PointSize 

3.3 示例2:gl_Position 

3.4 gl_FragColor

3.5 渲染点片元坐标gl_PointCoord

3.6 gl_PointCoord应用案例

四、GPU的内置函数

4. 1 内置函数列表

4.2 角度与三角函数

4.3 指数函数

4.4 通用函数

4.5 几何函数

4.6 矩阵函数

4.7 矢量函数

4.8 纹理查询函数


一、说明

        着色器的内置变量和内置函数很有必要说一说,因为,初入门的时候不知道着色器有多深的水准,必须将它所蕴涵的东西统统摆到桌面上,才能有所准备,有所认知,有所实用。本篇就是将着色器默认的变量函数统统摆出,混个脸熟。

二、着色器的变量

2.1 着色器变量

        着色器有两种变量:

  • 普通变量,着色器语言和C语言类似,需要先声明后使用。
  • 内置变量,所谓内置变量就是不用声明可以直接赋值,主要是为了实现特定的功能。    

2.2 着色器内置变量

1) 顶点着色器内置变量

名称类型描述
gl_Colorvec4输入属性-表示顶点的主颜色
gl_SecondaryColorvec4输入属性-表示顶点的辅助颜色
gl_Normalvec3输入属性-表示顶点的法线值
gl_Vertexvec4输入属性-表示物体空间的顶点位置
gl_MultiTexCoordnvec4输入属性-表示顶点的第n个纹理的坐标
gl_FogCoordfloat输入属性-表示顶点的雾坐标
gl_Positionvec4输出属性-变换后的顶点的位置,用于后面的固定的裁剪等操作。所有的顶点着色器都必须写这个值。
gl_ClipVertexvec4输出坐标,用于用户裁剪平面的裁剪
gl_PointSizefloat点的大小
gl_FrontColorvec4正面的主颜色的varying输出
gl_BackColorvec4背面主颜色的varying输出
gl_FrontSecondaryColorvec4正面的辅助颜色的varying输出
gl_BackSecondaryColorvec4背面的辅助颜色的varying输出
gl_TexCoord[]vec4纹理坐标的数组varying输出
gl_FogFragCoordfloat雾坐标的varying输出

2)片段着色器内置变量

名称类型描述
gl_Colorvec4包含主颜色的插值只读输入
gl_SecondaryColorvec4包含辅助颜色的插值只读输入
gl_TexCoord[]vec4包含纹理坐标数组的插值只读输入
gl_FogFragCoordfloat包含雾坐标的插值只读输入
gl_FragCoordvec4只读输入,窗口的x,y,z和1/w
gl_FrontFacingbool只读输入,如果是窗口正面图元的一部分,则这个值为true
gl_PointCoordvec2点精灵的二维空间坐标范围在(0.0, 0.0)到(1.0, 1.0)之间,仅用于点图元和点精灵开启的情况下。
gl_FragData[]vec4使用glDrawBuffers输出的数据数组。不能与gl_FragColor结合使用。
gl_FragColorvec4输出的颜色用于随后的像素操作
gl_FragDepthfloat输出的深度用于随后的像素操作,如果这个值没有被写,则使用固定功能管线的深度值代替

三、最常见内置变量使用范例

3.1 常见着色器变量

内置变量名称含义变量数值类型
gl_PointSize 点渲染模式,方形点区域渲染像素大小 float
gl_Position       顶点位置坐标   vec4
gl_FragColor     片元颜色值    vec4
gl_FragCoord     片元坐标,单位像素   vec2
gl_PointCoord    点渲染模式对应点像素坐标    vec2

        当WebGL执行绘制函数gl.drawArrays()绘制模式是点模式gl.POINTS的时候,顶点着色器语言main函数中才会用到内置变量gl_PointSize,使用内置变量gl_PointSize主要是用来设置顶点渲染出来的方形点像素大小。

3.2 示例1: gl_PointSize 

void main() {//给内置变量gl_PointSize赋值像素大小,注意值是浮点数gl_PointSize=20.0;
}//绘制函数绘制模式:点gl.POINTS
gl.drawArrays(gl.POINTS,0,点数量);

3.3 示例2:gl_Position 

        gl_Position内置变量主要和顶点相关,出现的位置是顶点着色器语言的main函数中。gl_Position内置变量表示最终传入片元着色器片元化要使用的顶点位置坐标。

        如果只有一个顶点,直接在给顶点着色器中设置内置变量gl_Position赋值就可以,内置变量gl_Position的值是四维向量vec4(x,y,z,1.0),前三个参数表示顶点的xyz坐标值,第四个参数是浮点数1.0。

void main() {//顶点位置,位于坐标原点gl_Position = vec4(0.0,0.0,0.0,1.0);
}

        如果你想完全理解内置变量gl_Position,必须建立逐顶点的概念,如果javascript语言中出现一个变量赋值,你可以理解为仅仅执行一次,但是对于着色器中不能直接这么理解,如果有多个顶点,你可以理解为每个顶点都要执行一遍顶点着色器主函数main中的程序。

        多个顶点的时候,内置变量gl_Position对应的值是attribute关键字声明的顶点位置坐标变量apos,顶点位置坐标变量apos变量对应了javascript代码中多个顶点位置数据。

<!-- 顶点着色器源码 -->
<script id="vertexShader" type="x-shader/x-vertex">
  //attribute声明vec4类型变量apos
  attribute vec4 apos;
  void main() {
    //顶点坐标apos赋值给内置变量gl_Position
    //逐顶点处理数据
    gl_Position = apos;
  }
</script>

        逐顶点处理的案例:WebGL的每一个顶点位置坐标都会通过平移矩阵m4进行矩阵变换,相当于批量操作所有的顶点数据,进行了平移,只是平移的计算通过矩阵乘法运算完成的而已。所谓的逐顶点,在这里体现的就是每一个顶点都会执行main函数中的矩阵变换。你可以参照生活的流水线去理解,比如多个同样的设备从我这里经过,我会分别对他们进行同样的操作,比如安装一个零件。

<!-- 顶点着色器源码 -->
<script id="vertexShader" type="x-shader/x-vertex">
  //attribute声明vec4类型变量apos
  attribute vec4 apos;
  void main() {
    //创建平移矩阵(沿x轴平移-0.4)
    //1   0   0  -0.4
    //0   1   0    0
    //0   0   1    0
    //0   0   0    1
    mat4 m4 = mat4(1,0,0,0,  0,1,0,0,  0,0,1,0,  -0.4,0,0,1);
    //平移矩阵m4左乘顶点坐标(vec4类型数据可以理解为线性代数中的nx1矩阵,即列向量)
    // 逐顶点进行矩阵变换
    gl_Position = m4*apos;
  }

</script>


## gl_Position的顶点数据传递
attribute声明的顶点变量数据如何通过javascript的WebGL API批量传递所有顶点数据。

<script>
    //顶点着色器源码
    var vertexShaderSource = document.getElementById( 'vertexShader' ).innerText;
    //片元着色器源码
    var fragShaderSource = document.getElementById( 'fragmentShader' ).innerText;
    //初始化着色器
    var program = initShader(gl,vertexShaderSource,fragShaderSource);
    //获取顶点着色器的位置变量apos,即aposLocation指向apos变量。
    var aposLocation = gl.getAttribLocation(program,'apos');

    //类型数组构造函数Float32Array创建顶点数组
    var data=new Float32Array([0.5,0.5,-0.5,0.5,-0.5,-0.5,0.5,-0.5]);

    //创建缓冲区对象
    var buffer=gl.createBuffer();
    //绑定缓冲区对象,激活buffer
    gl.bindBuffer(gl.ARRAY_BUFFER,buffer);
    //顶点数组data数据传入缓冲区
    gl.bufferData(gl.ARRAY_BUFFER,data,gl.STATIC_DRAW);
    //缓冲区中的数据按照一定的规律传递给位置变量apos
    gl.vertexAttribPointer(aposLocation,2,gl.FLOAT,false,0,0);
    //允许数据传递
    gl.enableVertexAttribArray(aposLocation);
...
</script>


3.4 示例3:gl_FragColor

gl_FragColor内置变量主要用来设置片元像素的颜色,出现的位置是片元着色器语言的main函数中。

内置变量gl_Position的值是四维向量vec4(r,g,b,a),前三个参数表示片元像素颜色值RGB,第四个参数是片元像素透明度A,1.0表示不透明,0.0表示完全透明。

// 片元颜色设置为红色
gl_FragColor = vec4(1.0,0.0,0.0,1.0);

理解内置变量gl_Position需要建立逐顶点的概念,对于内置变量gl_FragColor而言,需要建立逐片元的概念。顶点经过片元着色器片元化以后,得到一个个片元,或者说像素点,然后通过内置变量gl_FragColor给每一个片元设置颜色值,所有片元可以使用同一个颜色值,也可能不是同一个颜色值,可以通过特定算法计算或者纹理像素采样。

根据位置设置渐变色

  void main() {
    // 片元沿着x方向渐变
    gl_FragColor = vec4(gl_FragCoord.x/500.0*1.0,1.0,0.0,1.0);
  }

纹理采样

// 接收插值后的纹理坐标
varying vec2 v_TexCoord;
// 纹理图片像素数据
uniform sampler2D u_Sampler;
void main() {
  // 采集纹素,逐片元赋值像素值
  gl_FragColor = texture2D(u_Sampler,v_TexCoord);
}

片元坐标gl_FragCoord
内置变量gl_FragCoord表示WebGL在canvas画布上渲染的所有片元或者说像素的坐标,坐标原点是canvas画布的左上角,x轴水平向右,y竖直向下,gl_FragCoord坐标的单位是像素,gl_FragCoord的值是vec2(x,y),通过gl_FragCoord.x、gl_FragCoord.y方式可以分别访问片元坐标的纵横坐标。

下面代码是把canvas画布上不同区域片元设置为不同颜色。

<!-- 片元着色器源码 -->
<script id="fragmentShader" type="x-shader/x-fragment">
  void main() {
    // 根据片元的x坐标,来设置片元的像素值
    if(gl_FragCoord.x < 300.0){
      // canvas画布上[0,300)之间片元像素值设置
      gl_FragColor = vec4(1.0,0.0,0.0,1.0);
    }else if (gl_FragCoord.x <= 400.0) {
      // canvas画布上(300,400]之间片元像素值设置
      gl_FragColor = vec4(0.0,1.0,0.0,1.0);
    }else {
      // canvas画布上(400,500]之间片元像素值设置
      gl_FragColor = vec4(0.0,0.0,1.0,1.0);
    }    
    // 所有片元设置为红色
    // gl_FragColor = vec4(1.0,0.0,0.0,1.0);
  }
</script>


片元的颜色随着坐标变化(设置一个渐变色效果)

<!-- 片元着色器源码 -->
<script id="fragmentShader" type="x-shader/x-fragment">
  void main() {
    // 片元沿着x方向渐变
    gl_FragColor = vec4(gl_FragCoord.x/500.0*1.0,1.0,0.0,1.0);
  }
</script>



3.5 渲染点片元坐标gl_PointCoord


        如果你想了解内置变量gl_PointCoord表示的坐标含义,就需要了解 GL绘制函数gl.drawArrays()的绘制模式参数gl.POINTS。

        绘制函数gl.drawArrays()绘制模式参数设置为点渲染模式gl.POINTS,WebGL会把顶点渲染为一个方形区域,在顶点着色器代码中可以通过内置变量gl_PointSize设置顶点渲染的方向区域像素大小。

        一个顶点渲染为一个方形区域,每个方形区域可以以方向区域的左上角建立一个直角坐标系,然后使用内置变量gl_PointCoord描述每个方形区域中像素或者说片元的坐标,比如方形区域的左上角坐标是(0.0,0.0),每个方形区域几何中心坐标是(0.5,0.5),右下角坐标是(1.0,1.0)。

        注意内置变量gl_PointCoord和gl_FragCoord表示的像素坐标含义不同,查看下图表示。


// 点绘制模式渲染10个顶点
gl.drawArrays(gl.POINTS,0,10);

顶点着色器中通过内置变量gl_PointSize设置点渲染的方形区域像素尺寸。

void main() {
  //点渲染的方形区域像素大小
  gl_PointSize = 20.0;
  ...
}


3.6 gl_PointCoord应用案例


        gl.POINTS绘制模式点默认渲染效果是方形区域,通过下面片元着色器代码设置可以把默认渲染效果更改为圆形区域。

<!-- 片元着色器源码 -->
<script id="fragmentShader" type="x-shader/x-fragment">
  precision lowp float;// 所有float类型数据的精度是lowp
  void main() {
    // 计算方形区域每个片元距离方形几何中心的距离
    // gl.POINTS模式点渲染的方形区域,方形中心是0.5,0.5,左上角是坐标原点,右下角是1.0,1.0,
    float r = distance(gl_PointCoord, vec2(0.5, 0.5));
    //根据距离设置片元
    if(r < 0.5){
      // 方形区域片元距离几何中心半径小于0.5,像素颜色设置红色
      gl_FragColor = vec4(1.0,0.0,0.0,1.0);
    }else {
      // 方形区域距离几何中心半径不小于0.5的片元剪裁舍弃掉:
      discard;
    }
  }

</script>

        通过gl_PointCoord返回的是片元纵横坐标vec2(x,y),自然通过xy分量gl_PointCoord.x、gl_PointCoord.y方式可以分别访问片元坐标的横坐标、纵坐标,
                        

四、GPU的内置函数

4. 1 内置函数列表

4.2 角度与三角函数

4.3 指数函数

4.4 通用函数


 

4.5 几何函数

4.6 矩阵函数

4.7 矢量函数

4.8 纹理查询函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/266470.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java根据excel模版导出Excel(easyexcel、poi)——含项目测试例子拿来即用

Java根据excel模版导出Excel&#xff08;easyexcel、poi&#xff09;——含项目测试例子拿来即用 1. 前言1.1 关于Excel的一般导出2.2 关于easyexcel的根据模版导出 2. 先看效果2.1 模版2.2 效果 3. 代码实现&#xff08;核心代码&#xff09;3.1 项目代码结构3.2 静态填充例子…

如何使用Portainer创建Nginx容器并搭建web网站发布至公网可访问【内网穿透】

文章目录 前言1. 安装Portainer1.1 访问Portainer Web界面 2. 使用Portainer创建Nginx容器3. 将Web静态站点实现公网访问4. 配置Web站点公网访问地址4.1公网访问Web站点 5. 固定Web静态站点公网地址6. 固定公网地址访问Web静态站点 前言 Portainer是一个开源的Docker轻量级可视…

《互联网的世界》第三讲-tcp

dns 找到了地址&#xff0c;spf 确定了路径&#xff0c;如何运输数据呢&#xff1f;今天讲 tcp。 计算机网络领域的特定技术是最后当你干这个事时才要用的&#xff0c;我对孩子们这样说&#xff0c;实际上你可以随便看一个快递单子来理解端到端传输协议。 源地址&#xff0c…

华为s5720s-28p-power-li-ac堆叠配置

叠物理约束&#xff1a; • 连线推荐示意图选用产品子系列中固定的一款设备做示例&#xff0c;与选择产品时指定型号的外观可能不同。示意图主要用于让用户了解相同子系列设备可以用作堆叠的端口的位置&#xff0c;以及使用不同的连线方式时如何连接设备上的端口。因此&#xf…

万字带你走过数据库的这激荡的三年

本文收集了卡内基梅隆大学计算机科学系数据库学副教授 Andy Pavlo 从 2021 到 2023 连续三年对数据库领域的回顾&#xff0c;希望通过连续三年的回顾让你对数据库领域的技术发展有所了解。 关于 Andy Pavlo&#xff1a;卡内基梅隆大学计算机科学系数据库学副教授&#xff0c;数…

SpringCloud Alibaba(保姆级入门及操作)

第一章 微服务概念 1.0 科普一些术语 科普一下项目开发过程中常出现的术语,方便后续内容的理解。 **服务器:**分软件与硬件,软件:类型tomcat这种跑项目的程序, 硬件:用来部署项目的电脑(一般性能比个人电脑好) **服务:**操作系统上术语:一个程序,开发中术语:一个…

iOS消息发送流程

Objc的方法调用基于消息发送机制。即Objc中的方法调用&#xff0c;在底层实际都是通过调用objc_msgSend方法向对象消息发送消息来实现的。在iOS中&#xff0c; 实例对象的方法主要存储在类的方法列表中&#xff0c;类方法则是主要存储在原类中。 向对象发送消息&#xff0c;核心…

机器学习(II)--样本不平衡

现实中&#xff0c;样本&#xff08;类别&#xff09;样本不平衡&#xff08;class-imbalance&#xff09;是一种常见的现象&#xff0c;如&#xff1a;金融欺诈交易检测&#xff0c;欺诈交易的订单样本通常是占总交易数量的极少部分&#xff0c;而且对于有些任务而言少数样本更…

SAP VL09 冲销货物移动时候,不能取消来自分散系统的货物移动的报错

解决方案一&#xff1a; .在增强中&#xff0c;把VLSTK字段清空 增强BADI&#xff1a;LE_SHP_DELIVERY_PROC 方法&#xff1a;CHANGE_DELIVERY_HEADER 清空表值&#xff1a;LIKP-VLSTK.“分配状态(分散仓库状态) 解决方案二&#xff1a; 之前的旧交货单可在SE16N 中 将…

【FPGA/IC】RAM-Based Shift Register Xilinx IP核的使用

前言 一般来讲&#xff0c;如果要实现移位寄存器的话&#xff0c;通常都是写RTL用reg来构造&#xff0c;比如1bit变量移位一个时钟周期就用1个reg&#xff0c;也就是一个寄存器FF资源&#xff0c;而移位16个时钟周期就需要16个FF&#xff0c;这种方法无疑非常浪费资源。 Xili…

【Redis】深入理解 Redis 常用数据类型源码及底层实现(6.详解Set和ZSet数据结构)

本文是深入理解 Redis 常用数据类型源码及底层实现系列的第6篇&#xff5e;前5篇可移步(&#xffe3;∇&#xffe3;)/ 【Redis】深入理解 Redis 常用数据类型源码及底层实现&#xff08;1.结构与源码概述&#xff09;-CSDN博客 【Redis】深入理解 Redis 常用数据类型源码及底…

h5player 这款视频增强插件简直就是我追剧学习的必备神器

h5player简介 h5player是一款视频增强脚本&#xff0c;支持所有H5视频网站&#xff0c;例如&#xff1a;B站、抖音、腾讯视频、优酷、爱奇艺、西瓜视频、油管&#xff08;YouTube&#xff09;、微博视频、知乎视频、搜狐视频、网易公开课、百度网盘、阿里云盘、ted、instagram…

【leetcode】链表的中间节点

大家好&#xff0c;我是苏貝&#xff0c;本篇博客带大家刷题&#xff0c;如果你觉得我写的还不错的话&#xff0c;可以给我一个赞&#x1f44d;吗&#xff0c;感谢❤️ 目录 点击查看题目 思路: slow和fast都初始化为head&#xff0c;之后slow每走1步&#xff0c;fast走2步…

windows通过nginx反向代理配置https安装SSL证书

先看下效果&#xff1a; 原来的是 http&#xff0c;配置好后 https 也能用了&#xff0c;并且显示为安全链接。 首先需要 SSL证书 。 SSL 证书是跟域名绑定的&#xff0c;还有有效期。 windows 下双击可以查看相关信息。 下载的证书是分 Apache、IIS、Tomcat 和 Nginx 的。 我…

Facebook的数字治理挑战:社交平台的未来模式

在当今数字化时代&#xff0c;社交媒体平台已经成为人们日常生活的重要组成部分&#xff0c;而Facebook作为其中最具代表性的平台之一&#xff0c;其承载的社交功能和影响力已经不可小觑。然而&#xff0c;随着社交媒体的普及和发展&#xff0c;一系列数字治理挑战也随之而来&a…

解释一下前端框架中的虚拟DOM(virtual DOM)和实际DOM(real DOM)之间的关系。

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

Web Tomcat

目录 1 前言2 Tomcat的安装3 Tomcat文件的构成4 Tomcat的使用步骤 1 前言 Tomcat是一个 http(web)的容器&#xff0c;笼统的理解一下所有的网站都叫做web。这个web容器可以把我们的前端(htmlcssjs)和后端(servlet)代码都运行起来。 Tomcat是一个免费的开源的Servlet容器&#…

【Java EE初阶二十五】简单的表白墙(一)

1. 前端部分 1.1 前端代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"wid…

【Spring Cloud 进阶】OpenFeign 底层原理解析

参考文章 万字33张图探秘OpenFeign核心架构原理 | 三友SpringCloud OpenFeign源码详细解析Java 代理机制 OpenFeign 是一个精彩的使用动态代理技术的典型案例&#xff0c;通过分析其底层实现原理&#xff0c;我们可以对动态代理技术有进一步的理解。 目录 1. Feign 与 OpenFeig…

网络安全攻防演练:企业蓝队建设指南

第一章 概述 背景 网络实战攻防演习是当前国家、重要机关、企业组织用来检验网络安全防御能力的重要手段之一,是对当下关键信息系统基础设施网络安全保护工作的重要组成部分。网络攻防实战演习通常是以实际运行的信息系统为攻击目标,通过在一定规则限定下的实战攻防对抗,最…