性别和年龄的视频实时监测项目

注意:本文引用自专业人工智能社区Venus AI
更多AI知识请参考原站 ([www.aideeplearning.cn])

性别和年龄检测 Python 项目

首先介绍性别和年龄检测的高级Python项目中使用的专业术语

什么是计算机视觉?

计算机视觉是使计算机能够像人类一样查看和识别数字图像和视频的研究领域。它面临的挑战很大程度上源于对生物视觉的有限理解。计算机视觉涉及获取、处理、分析和理解数字图像,以从现实世界中提取高维数据,从而生成可用于做出决策的符号或数字信息。该过程通常包括对象识别、视频跟踪、运动估计和图像恢复等实践。

什么是 OpenCV?

OpenCV是开源计算机视觉的缩写。顾名思义,它是一个开源计算机视觉和机器学习库。该库能够处理实时图像和视频,同时还具有分析功能。它支持深度学习框架Tensorflow、Caffe 和 PyTorch。

什么是CNN?

CNN即卷积神经网络,是一种广泛用于图像识别和处理的深度神经网络 (DNN) 。它具有输入层和输出层以及多个隐藏层,其中许多是卷积层。在某种程度上,CNN 是正则化的多层感知器。

性别和年龄检测——目标

构建一个性别和年龄检测器,可以在 Adience 数据集上使用深度学习模型来大致猜测图片中人(脸部)的性别和年龄。

性别和年龄检测——关于该项目

在这个 Python 项目中,我们将使用深度学习从单张脸部图像中准确识别一个人的性别和年龄。我们将使用Tal Hassner 和 Gil Levi训练的模型。预测的性别可以是“男性”和“女性”之一,预测的年龄可以是以下范围之一 – (0 – 2)、(4 – 6)、(8 – 12)、(15 – 20) 、(25 – 32)、(38 – 43)、(48 – 53)、(60 – 100)(最终 softmax 层中的 8 个节点)。由于化妆、灯光、障碍物和面部表情等因素,很难从单张图像中准确猜测出确切的年龄。因此,我们将其视为分类问题,而不是回归问题。项目的结果展示动态图如下所示,请点击观看:

ev_20240225_131028

CNN 架构

这个 python 项目的卷积神经网络很简单,有 3 个卷积层:

  • 卷积层:96 个节点,卷积核大小 7
  • 卷积层:256 个节点,卷积核大小 5
  • 卷积层:384 个节点,卷积核大小 3

它有 2 个全连接层,每个层有 512 个节点,以及一个 softmax 类型的最终输出层。

要开始 python 项目,我们将:

  • 检测人脸
  • 分为男/女
  • 分为 8 个年龄范围之一
  • 将结果放在图像上并显示
数据集

对于这个 python 项目,我们将使用 Adience 数据集;该数据集可在公共领域使用,您可以在此处找到它。该数据集作为人脸照片的基准,包含各种现实世界的成像条件,如噪声、照明、姿势和外观。这些图像是从 Flickr 相册中收集的,并根据知识共享 (CC) 许可进行分发。它共有 26,580 张照片,涉及 8 个年龄段(如上所述)的 2,284 名拍摄对象,大小约为 1GB。我们将使用的模型已经在此数据集上进行了训练。

先决条件

您需要安装 OpenCV (cv2) 才能运行该项目。可以用 pip- 来做到这一点

​​​​​​pip install opencv-python

您需要的其他包是 math 和 argparse,它们是标准 Python 库的一部分。

项目的目录结构

项目的目录结构如下:

  • opencv_face_ detector.pbtxt
  • opencv_face_ detector_uint8.pb
  • Age_deploy.prototxt
  • Age_net.caffemodel
  • gander_deploy.prototxt
  • gander_net.caffemodel
  • main.py
  • 一示例的图片

关于上述文件类型的解释:

  • .pb文件:这是一个TensorFlow用于保存模型的文件格式。它包含了模型的结构(也就是神经网络的架构)和模型训练后的权重(即模型在训练过程中学到的信息)。使用这个文件,我们可以运行一个已经训练好的模型来进行面部检测。
  • .pbtxt文件:与.pb文件类似,但它以文本格式存储protobuf数据,而不是二进制格式。这使得文件内容可以直接阅读和编辑,但通常大小会更大。
  • TensorFlow文件:TensorFlow是一个流行的机器学习框架,用于创建和训练神经网络。.pb和.pbtxt文件都是TensorFlow用来保存模型的文件格式。
  • .prototxt文件:这些文件用于描述神经网络的结构,即网络中每一层应该如何构建。这对于构建用于年龄和性别识别的模型特别重要。
  • .caffemodel文件:这种文件格式是Caffe框架的一部分,另一个流行的机器学习框架。.caffemodel文件保存了训练后的模型参数,即网络每一层的权重和偏置。这对于运行已经训练好的年龄和性别识别模型至关重要。

注意:上述这些文件是博主将项目编译之后得到的结果,而不是原始项目代码。这些文件类型通常用于存储训练好的模型和它们的配置,而不是用于存储原始的源代码。原代码详见Github:https://github.com/eranid/adience_align/tree/master

main.py脚本详解:

导入库

  • import cv2: 导入 OpenCV 库,用于计算机视觉相关任务。
  • import math: 导入数学库,提供数学运算支持。
  • import argparse: 导入参数解析库,用于解析命令行参数。
import cv2
import math
import argparse

highlightFace 函数

  • 这个函数用于在图像中突出显示人脸。
  • frame: 要处理的图像。
  • conf_threshold: 用于确定检测是否有效的置信度阈值。
  • 函数首先创建图像的副本,然后根据图像的尺寸生成一个 blob(神经网络输入)。
  • 使用提供的神经网络 (net) 对 blob 进行前向传播,以检测图像中的人脸。
  • 检测到的每个人脸都被添加到 faceBoxes 列表中,并在图像上绘制矩形框以突出显示人脸。
  • 返回处理后的图像和检测到的人脸框列表。 
def highlightFace(net, frame, conf_threshold=0.7):frameOpencvDnn=frame.copy()frameHeight=frameOpencvDnn.shape[0]frameWidth=frameOpencvDnn.shape[1]blob=cv2.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)net.setInput(blob)detections=net.forward()faceBoxes=[]for i in range(detections.shape[2]):confidence=detections[0,0,i,2]if confidence>conf_threshold:x1=int(detections[0,0,i,3]*frameWidth)y1=int(detections[0,0,i,4]*frameHeight)x2=int(detections[0,0,i,5]*frameWidth)y2=int(detections[0,0,i,6]*frameHeight)faceBoxes.append([x1,y1,x2,y2])cv2.rectangle(frameOpencvDnn, (x1,y1), (x2,y2), (0,255,0), int(round(frameHeight/150)), 8)return frameOpencvDnn,faceBoxes

解析命令行参数: 

  • 使用 argparse 库来解析命令行输入的参数。这里解析了 --image 参数,允许用户指定一个图像文件的路径。
  • 若不指定,默认使用摄像头采集当前画面进行实时检测。
parser=argparse.ArgumentParser()
parser.add_argument('--image')args=parser.parse_args()

加载模型
  • 指定了用于人脸检测、年龄和性别预测的模型文件的路径。
  • 使用 cv2.dnn.readNet 从这些路径加载对应的模型。
  • MODEL_MEAN_VALUES: 在预处理图像时用于归一化的均值。
  • ageList 和 genderList: 分别包含年龄范围和性别类别的列表。
faceProto="opencv_face_detector.pbtxt"
faceModel="opencv_face_detector_uint8.pb"
ageProto="age_deploy.prototxt"
ageModel="age_net.caffemodel"
genderProto="gender_deploy.prototxt"
genderModel="gender_net.caffemodel"MODEL_MEAN_VALUES=(78.4263377603, 87.7689143744, 114.895847746)
ageList=['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList=['Male','Female']faceNet=cv2.dnn.readNet(faceModel,faceProto)
ageNet=cv2.dnn.readNet(ageModel,ageProto)
genderNet=cv2.dnn.readNet(genderModel,genderProto)

处理视频流

  • 使用 cv2.VideoCapture 打开视频源(从文件或摄像头)。
  • 在一个循环中读取每一帧图像,并使用 highlightFace 函数检测人脸。
video=cv2.VideoCapture(args.image if args.image else 0)

性别和年龄预测
  • 对于检测到的每个人脸,截取人脸区域并为性别和年龄预测网络准备输入 blob。
  • 运行性别和年龄预测网络,并从 genderList 和 ageList 中获取预测结果。
  • 将预测结果(性别和年龄)打印出来,并在图像上绘制包含这些信息的文本。
  • 使用 cv2.imshow 显示带有预测结果的图像。
  • 循环持续进行,直到用户按键中断。
padding=20
while cv2.waitKey(1)<0:hasFrame,frame=video.read()if not hasFrame:cv2.waitKey()breakresultImg,faceBoxes=highlightFace(faceNet,frame)if not faceBoxes:print("No face detected")for faceBox in faceBoxes:face=frame[max(0,faceBox[1]-padding):min(faceBox[3]+padding,frame.shape[0]-1),max(0,faceBox[0]-padding):min(faceBox[2]+padding, frame.shape[1]-1)]blob=cv2.dnn.blobFromImage(face, 1.0, (227,227), MODEL_MEAN_VALUES, swapRB=False)genderNet.setInput(blob)genderPreds=genderNet.forward()gender=genderList[genderPreds[0].argmax()]print(f'Gender: {gender}')ageNet.setInput(blob)agePreds=ageNet.forward()age=ageList[agePreds[0].argmax()]print(f'Age: {age[1:-1]} years')cv2.putText(resultImg, f'{gender}, {age}', (faceBox[0], faceBox[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,255,255), 2, cv2.LINE_AA)cv2.imshow("Detecting age and gender", resultImg)

性别和年龄检测的 Python 项目示例 

除了捕获摄像头画面进行检测外,脚本也支持在我们自己的一些图像上尝试这个性别和年龄分类器。

我们将进入命令提示符,使用图像选项运行脚本并指定要分类的图像:

输入:
pthon main.py --image girl2.jpg
输出:

 

资源:

在这个 python 项目中,我们实现了一个 CNN 来从单张脸部图片或视频流中检测性别和年龄。

项目代码压缩包和项目的数据集,请原站 ([www.aideeplearning.cn])

如果需要项目的原代码,请访问github:

GilLevi/AgeGenderDeepLearning on GitHub.

© 版权声明

文章版权归作者所有,未经允许,请勿转载,私自转载将严厉追究法律责任。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/267576.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

golang学习5,glang的web的restful接口

1. //返回json r.GET("/getJson", controller.GetUserInfo) package mainimport (/*"net/http"*/"gin/src/main/controller""github.com/gin-gonic/gin" )func main() {r : gin.Default()r.GET("/get", func(ctx *…

【K8S类型系统】一文梳理 K8S 各类型概念之间的关系(GVK/GVR/Object/Schema/RestMapper)

参考 k8s 官方文档 https://kubernetes.io/zh-cn/docs/reference/https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.29/ 重点 Kubernetes源码学习-kubernetes基础数据结构 - 知乎 重点 Kubernetes类型系统 | 李乾坤的博客 重点 k8s源码学习-三大核心数…

Java学习--学生管理系统(残破版)

代码 Main.java import java.util.ArrayList; import java.util.Scanner;public class Main {public static void main(String[] args) {ArrayList<Student> list new ArrayList<>();loop:while (true) {System.out.println("-----欢迎来到阿宝院校学生管理系…

Stable Cascade-ComfyUI中文生图、图生图、多图融合基础工作流分享

最近 ComfyUI对于Stable Cascade的支持越来越好了一些&#xff0c;官方也放出来一些工作流供参考。 这里简单分享几个比较常用的基础工作流。 &#xff08;如果还没有下载模型&#xff0c;可以先阅读上一篇Stable Cascade升级&#xff0c;现在只需要两个模型&#xff09; &a…

2024国际元宇宙博览会:阿里元境以元宇宙数字内容助力文旅数字化发展

2月26日&#xff0c;MES2024国际元宇宙博览会在深圳会展中心正式开幕&#xff0c;大会以“向3D出发&#xff0c;元宇宙来袭&#xff0c;电竞娱乐正当时”为主题&#xff0c;聚焦元宇宙产业链&#xff0c;以“汇聚企业创新&#xff0c;助力产业重构&#xff0c;推动行业发展”为…

常见外设学习以及无线通信频率

常见外设 UART UART&#xff08;Universal Asynchronous Receiver/Transmitter&#xff0c;通用异步收发器&#xff09;是一种异步、串行、全双工的通信总线。 UART 有3根线&#xff0c;分别是&#xff1a;发送线&#xff08;TX&#xff09;、接收线&#xff08;RX&#xff…

【C语言】文件及文件操作详解(fseek,ftell,rwind)

目录 1. 为什么使用文件 2. 什么是文件 2.1 程序文件 2.2 数据文件 2.3 文件名 3. 二进制文件和文本文件 4. 文件的打开和关闭 4.1 流和标准流 4.1.1 流 4.1.2 标准流 4.2 文件指针 4.3 文件的打开和关闭 5. 文件的顺序读写 6.文件的随机读写 6.1 fseek 6.2 ft…

java 基础(核心知识搭配代码)

前言 java的学习分为了上部分以及下部分进行学习&#xff0c;上部分就是对于java的基础知识&#xff0c;面向对象上&#xff0c;面向对象下&#xff0c;异常操作&#xff0c;javaApi&#xff1b;下部主要是集合&#xff0c;泛型&#xff0c;反射&#xff0c;IO流&#xff0c;J…

离线数仓(四)【数仓数据同步策略】

前言 今天来把数仓数据同步解决掉&#xff0c;前面我们已经把日志数据到 Kafka 的通道打通了。 1、实时数仓数据同步 关于实时数仓&#xff0c;我们的 Flink 直接去 Kafka 读取即可&#xff0c;我们在学习 Flink 的时候也知道 Flink 提供了 Kafka Source&#xff0c;所以这里不…

SQLPro Studio:数据库管理的革命性工具 mac版

SQLPro Studio是一款强大的数据库管理和开发工具&#xff0c;它旨在提供高效、便捷和安全的数据库操作体验。无论是数据库管理员、开发人员还是数据分析师&#xff0c;SQLPro Studio都能满足他们在数据库管理、查询、设计和维护方面的需求。 SQLPro Studio mac版软件获取 首先…

Android ANR 日志分析定位

ANR 是 Android 应用程序中的 "Application Not Responding" 的缩写&#xff0c;中文意思是 "应用程序无响应"。这是当应用程序在 Android 系统上运行时&#xff0c;由于某种原因不能及时响应用户输入事件或执行一个操作&#xff0c;导致界面无法更新&…

蓝桥杯备战刷题two(自用)

1.杨辉三角形 #include<iostream> using namespace std; #define ll long long const int N2e510; int a[N]; //1 0 0 0 0 0 0 //1 1 0 0 0 0 0 //1 2 1 0 0 0 0 //1 3 3 1 0 0 0 //1 4 6 4 1 0 0 //1 5 10 10 5 1 //前缀和思想 //第一列全为1,第二列为从0开始递增1的序…

探索数据结构:深入了解顺序表的奥秘

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属专栏&#xff1a;数据结构与算法 贝蒂的主页&#xff1a;Betty’s blog 1. 什么是顺序表 顺序表是用一段物理地址连续的存储单元依次存储数据元…

小白水平理解面试经典题目leetcode 606. Construct String from Binary Tree【递归算法】

Leetcode 606. 从二叉树构造字符串 题目描述 例子 小白做题 坐在自习室正在准备刷题的小白看到这道题&#xff0c;想想自己那可是没少和白月光做题呢&#xff0c;也不知道小美刷题刷到哪里了&#xff0c;这题怎么还没来问我&#xff0c;难道是王谦谦去做题了&#xff1f; 这…

Mac安装Appium

一、环境依赖 一、JDK环境二、Android-SDK环境&#xff08;android自动化&#xff09;三、Homebrew环境四、Nodejs 安装cnpm 五、安装appium六、安装appium-doctor来确认安装环境是否完成七、安装相关依赖 二、重头大戏&#xff0c; 配置wda&#xff08;WebDriverAgent&#x…

Unity(第九部)物体类

拿到物体的某些数据 using System.Collections; using System.Collections.Generic; using UnityEngine;public class game : MonoBehaviour {// Start is called before the first frame updatevoid Start(){//拿到当前脚本所挂载的游戏物体//GameObject go this.gameObject;…

Windows 11 23H2 based Tiny11 2311 中文输入法出错

参考&#xff1a; 1&#xff1a; Chinese IME dictionaries shows "not ready yet" in Windows Server 2022 - Windows Server | Microsoft Learn 2&#xff1a; Chinese basic typing not completing download - Microsoft Community 安装了 Tiny11 2311&#xff…

Pycharm的下载安装与汉化

一.下载安装包 1.接下来按照步骤来就行 2.然后就能在桌面上找到打开了 3.先建立一个文件夹 二.Pycharm的汉化

13. Springboot集成Protobuf

目录 1、前言 2、Protobuf简介 2.1、核心思想 2.2、Protobuf是如何工作的&#xff1f; 2.3、如何使用 Protoc 生成代码&#xff1f; 3、Springboot集成 3.1、引入依赖 3.2、定义Proto文件 3.3、Protobuf生成Java代码 3.4、配置Protobuf的序列化和反序列化 3.5、定义…

【深入了解设计模式】组合设计模式

组合设计模式 组合模式是一种结构型设计模式&#xff0c;它允许你将对象组合成树状结构来表现“整体-部分”关系。组合模式使得客户端可以统一对待单个对象和组合对象&#xff0c;从而使得代码更加灵活和易于扩展。 概述 ​ 对于这个图片肯定会非常熟悉&#xff0c;上图我们可…