YOLOv9有效改进|使用动态蛇形卷积Dynamic Snake Convolution


专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!!


一、改进点介绍

        使用ICCV2023中的动态蛇形卷积替换YOLOv9网络中的Conv模块。


二、Dynamic Snake Convolution模块详解

 2.1 模块简介

       应用场景: 适合 具有细长微弱的局部结构特征与复杂多变的全局形态特征的场景


三、 Dynamic Snake Convolution模块使用教程

3.1 Dynamic Snake Convolution模块的代码

import torch
import torch.nn as nn
from conv import Conv__all__ = ['DySnakeConv']class DySnakeConv(nn.Module):def __init__(self, inc, ouc, k=3) -> None:super().__init__()c_ = ouc // 3 // 16 * 16self.conv_0 = Conv(inc, ouc - 2 *c_, k)self.conv_x = DSConv(inc, c_, 0, k)self.conv_y = DSConv(inc, c_, 1, k)def forward(self, x):return torch.cat([self.conv_0(x), self.conv_x(x), self.conv_y(x)], dim=1)class DSConv(nn.Module):def __init__(self, in_ch, out_ch, morph, kernel_size=3, if_offset=True, extend_scope=1):"""The Dynamic Snake Convolution:param in_ch: input channel:param out_ch: output channel:param kernel_size: the size of kernel:param extend_scope: the range to expand (default 1 for this method):param morph: the morphology of the convolution kernel is mainly divided into two typesalong the x-axis (0) and the y-axis (1) (see the paper for details):param if_offset: whether deformation is required, if it is False, it is the standard convolution kernel"""super(DSConv, self).__init__()# use the <offset_conv> to learn the deformable offsetself.offset_conv = nn.Conv2d(in_ch, 2 * kernel_size, 3, padding=1)self.bn = nn.BatchNorm2d(2 * kernel_size)self.kernel_size = kernel_size# two types of the DSConv (along x-axis and y-axis)self.dsc_conv_x = nn.Conv2d(in_ch,out_ch,kernel_size=(kernel_size, 1),stride=(kernel_size, 1),padding=0,)self.dsc_conv_y = nn.Conv2d(in_ch,out_ch,kernel_size=(1, kernel_size),stride=(1, kernel_size),padding=0,)self.gn = nn.GroupNorm(out_ch // 4, out_ch)self.act = Conv.default_actself.extend_scope = extend_scopeself.morph = morphself.if_offset = if_offsetdef forward(self, f):offset = self.offset_conv(f)offset = self.bn(offset)# We need a range of deformation between -1 and 1 to mimic the snake's swingoffset = torch.tanh(offset)input_shape = f.shapedsc = DSC(input_shape, self.kernel_size, self.extend_scope, self.morph)deformed_feature = dsc.deform_conv(f, offset, self.if_offset)if self.morph == 0:x = self.dsc_conv_x(deformed_feature.type(f.dtype))x = self.gn(x)x = self.act(x)return xelse:x = self.dsc_conv_y(deformed_feature.type(f.dtype))x = self.gn(x)x = self.act(x)return x# Core code, for ease of understanding, we mark the dimensions of input and output next to the code
class DSC(object):def __init__(self, input_shape, kernel_size, extend_scope, morph):self.num_points = kernel_sizeself.width = input_shape[2]self.height = input_shape[3]self.morph = morphself.extend_scope = extend_scope  # offset (-1 ~ 1) * extend_scope# define feature map shape"""B: Batch size  C: Channel  W: Width  H: Height"""self.num_batch = input_shape[0]self.num_channels = input_shape[1]"""input: offset [B,2*K,W,H]  K: Kernel size (2*K: 2D image, deformation contains <x_offset> and <y_offset>)output_x: [B,1,W,K*H]   coordinate mapoutput_y: [B,1,K*W,H]   coordinate map"""def _coordinate_map_3D(self, offset, if_offset):device = offset.device# offsety_offset, x_offset = torch.split(offset, self.num_points, dim=1)y_center = torch.arange(0, self.width).repeat([self.height])y_center = y_center.reshape(self.height, self.width)y_center = y_center.permute(1, 0)y_center = y_center.reshape([-1, self.width, self.height])y_center = y_center.repeat([self.num_points, 1, 1]).float()y_center = y_center.unsqueeze(0)x_center = torch.arange(0, self.height).repeat([self.width])x_center = x_center.reshape(self.width, self.height)x_center = x_center.permute(0, 1)x_center = x_center.reshape([-1, self.width, self.height])x_center = x_center.repeat([self.num_points, 1, 1]).float()x_center = x_center.unsqueeze(0)if self.morph == 0:"""Initialize the kernel and flatten the kernely: only need 0x: -num_points//2 ~ num_points//2 (Determined by the kernel size)!!! The related PPT will be submitted later, and the PPT will contain the whole changes of each step"""y = torch.linspace(0, 0, 1)x = torch.linspace(-int(self.num_points // 2),int(self.num_points // 2),int(self.num_points),)y, x = torch.meshgrid(y, x, indexing = 'ij')y_spread = y.reshape(-1, 1)x_spread = x.reshape(-1, 1)y_grid = y_spread.repeat([1, self.width * self.height])y_grid = y_grid.reshape([self.num_points, self.width, self.height])y_grid = y_grid.unsqueeze(0)  # [B*K*K, W,H]x_grid = x_spread.repeat([1, self.width * self.height])x_grid = x_grid.reshape([self.num_points, self.width, self.height])x_grid = x_grid.unsqueeze(0)  # [B*K*K, W,H]y_new = y_center + y_gridx_new = x_center + x_gridy_new = y_new.repeat(self.num_batch, 1, 1, 1).to(device)x_new = x_new.repeat(self.num_batch, 1, 1, 1).to(device)y_offset_new = y_offset.detach().clone()if if_offset:y_offset = y_offset.permute(1, 0, 2, 3)y_offset_new = y_offset_new.permute(1, 0, 2, 3)center = int(self.num_points // 2)# The center position remains unchanged and the rest of the positions begin to swing# This part is quite simple. The main idea is that "offset is an iterative process"y_offset_new[center] = 0for index in range(1, center):y_offset_new[center + index] = (y_offset_new[center + index - 1] + y_offset[center + index])y_offset_new[center - index] = (y_offset_new[center - index + 1] + y_offset[center - index])y_offset_new = y_offset_new.permute(1, 0, 2, 3).to(device)y_new = y_new.add(y_offset_new.mul(self.extend_scope))y_new = y_new.reshape([self.num_batch, self.num_points, 1, self.width, self.height])y_new = y_new.permute(0, 3, 1, 4, 2)y_new = y_new.reshape([self.num_batch, self.num_points * self.width, 1 * self.height])x_new = x_new.reshape([self.num_batch, self.num_points, 1, self.width, self.height])x_new = x_new.permute(0, 3, 1, 4, 2)x_new = x_new.reshape([self.num_batch, self.num_points * self.width, 1 * self.height])return y_new, x_newelse:"""Initialize the kernel and flatten the kernely: -num_points//2 ~ num_points//2 (Determined by the kernel size)x: only need 0"""y = torch.linspace(-int(self.num_points // 2),int(self.num_points // 2),int(self.num_points),)x = torch.linspace(0, 0, 1)y, x = torch.meshgrid(y, x, indexing = 'ij')y_spread = y.reshape(-1, 1)x_spread = x.reshape(-1, 1)y_grid = y_spread.repeat([1, self.width * self.height])y_grid = y_grid.reshape([self.num_points, self.width, self.height])y_grid = y_grid.unsqueeze(0)x_grid = x_spread.repeat([1, self.width * self.height])x_grid = x_grid.reshape([self.num_points, self.width, self.height])x_grid = x_grid.unsqueeze(0)y_new = y_center + y_gridx_new = x_center + x_gridy_new = y_new.repeat(self.num_batch, 1, 1, 1)x_new = x_new.repeat(self.num_batch, 1, 1, 1)y_new = y_new.to(device)x_new = x_new.to(device)x_offset_new = x_offset.detach().clone()if if_offset:x_offset = x_offset.permute(1, 0, 2, 3)x_offset_new = x_offset_new.permute(1, 0, 2, 3)center = int(self.num_points // 2)x_offset_new[center] = 0for index in range(1, center):x_offset_new[center + index] = (x_offset_new[center + index - 1] + x_offset[center + index])x_offset_new[center - index] = (x_offset_new[center - index + 1] + x_offset[center - index])x_offset_new = x_offset_new.permute(1, 0, 2, 3).to(device)x_new = x_new.add(x_offset_new.mul(self.extend_scope))y_new = y_new.reshape([self.num_batch, 1, self.num_points, self.width, self.height])y_new = y_new.permute(0, 3, 1, 4, 2)y_new = y_new.reshape([self.num_batch, 1 * self.width, self.num_points * self.height])x_new = x_new.reshape([self.num_batch, 1, self.num_points, self.width, self.height])x_new = x_new.permute(0, 3, 1, 4, 2)x_new = x_new.reshape([self.num_batch, 1 * self.width, self.num_points * self.height])return y_new, x_new"""input: input feature map [N,C,D,W,H];coordinate map [N,K*D,K*W,K*H] output: [N,1,K*D,K*W,K*H]  deformed feature map"""def _bilinear_interpolate_3D(self, input_feature, y, x):device = input_feature.devicey = y.reshape([-1]).float()x = x.reshape([-1]).float()zero = torch.zeros([]).int()max_y = self.width - 1max_x = self.height - 1# find 8 grid locationsy0 = torch.floor(y).int()y1 = y0 + 1x0 = torch.floor(x).int()x1 = x0 + 1# clip out coordinates exceeding feature map volumey0 = torch.clamp(y0, zero, max_y)y1 = torch.clamp(y1, zero, max_y)x0 = torch.clamp(x0, zero, max_x)x1 = torch.clamp(x1, zero, max_x)input_feature_flat = input_feature.flatten()input_feature_flat = input_feature_flat.reshape(self.num_batch, self.num_channels, self.width, self.height)input_feature_flat = input_feature_flat.permute(0, 2, 3, 1)input_feature_flat = input_feature_flat.reshape(-1, self.num_channels)dimension = self.height * self.widthbase = torch.arange(self.num_batch) * dimensionbase = base.reshape([-1, 1]).float()repeat = torch.ones([self.num_points * self.width * self.height]).unsqueeze(0)repeat = repeat.float()base = torch.matmul(base, repeat)base = base.reshape([-1])base = base.to(device)base_y0 = base + y0 * self.heightbase_y1 = base + y1 * self.height# top rectangle of the neighbourhood volumeindex_a0 = base_y0 - base + x0index_c0 = base_y0 - base + x1# bottom rectangle of the neighbourhood volumeindex_a1 = base_y1 - base + x0index_c1 = base_y1 - base + x1# get 8 grid valuesvalue_a0 = input_feature_flat[index_a0.type(torch.int64)].to(device)value_c0 = input_feature_flat[index_c0.type(torch.int64)].to(device)value_a1 = input_feature_flat[index_a1.type(torch.int64)].to(device)value_c1 = input_feature_flat[index_c1.type(torch.int64)].to(device)# find 8 grid locationsy0 = torch.floor(y).int()y1 = y0 + 1x0 = torch.floor(x).int()x1 = x0 + 1# clip out coordinates exceeding feature map volumey0 = torch.clamp(y0, zero, max_y + 1)y1 = torch.clamp(y1, zero, max_y + 1)x0 = torch.clamp(x0, zero, max_x + 1)x1 = torch.clamp(x1, zero, max_x + 1)x0_float = x0.float()x1_float = x1.float()y0_float = y0.float()y1_float = y1.float()vol_a0 = ((y1_float - y) * (x1_float - x)).unsqueeze(-1).to(device)vol_c0 = ((y1_float - y) * (x - x0_float)).unsqueeze(-1).to(device)vol_a1 = ((y - y0_float) * (x1_float - x)).unsqueeze(-1).to(device)vol_c1 = ((y - y0_float) * (x - x0_float)).unsqueeze(-1).to(device)outputs = (value_a0 * vol_a0 + value_c0 * vol_c0 + value_a1 * vol_a1 +value_c1 * vol_c1)if self.morph == 0:outputs = outputs.reshape([self.num_batch,self.num_points * self.width,1 * self.height,self.num_channels,])outputs = outputs.permute(0, 3, 1, 2)else:outputs = outputs.reshape([self.num_batch,1 * self.width,self.num_points * self.height,self.num_channels,])outputs = outputs.permute(0, 3, 1, 2)return outputsdef deform_conv(self, input, offset, if_offset):y, x = self._coordinate_map_3D(offset, if_offset)deformed_feature = self._bilinear_interpolate_3D(input, y, x)return deformed_featureif __name__ == "__main__":model = DySnakeConv(32, 32)print(model(torch.zeros(2, 32, 640, 320)).shape)

3.2 在YOlO v9中的添加教程

阅读YOLOv9添加模块教程或使用下文操作

        1. 将YOLOv9工程中models下common.py文件中的最下行增加模块的代码。

         2. 将YOLOv9工程中models下yolo.py文件中的第681行(可能因版本变化而变化)增加以下代码。

            RepNCSPELAN4, SPPELAN, DySnakeConv}:

3.3 运行配置文件

# YOLOv9
# Powered bu https://blog.csdn.net/StopAndGoyyy
# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],  # conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# avg-conv down[-1, 1, ADown, [256]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# avg-conv down[-1, 1, ADown, [512]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# avg-conv down[-1, 1, ADown, [512]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 13], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 10], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 23[7, 1, CBLinear, [[256, 512]]], # 24[9, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]],  # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28# avg-conv down fuse[-1, 1, ADown, [256]],  # 29-P3/8[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31# avg-conv down fuse[-1, 1, ADown, [512]],  # 32-P4/16[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34# avg-conv down fuse[-1, 1, ADown, [512]],  # 35-P5/32[[25, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37[-1, 1, DySnakeConv, [512]],  # 38# detection head# detect[[31, 34, 38, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

3.4 训练过程


欢迎关注!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/268048.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Micropython基础】TCP客户端与服务器

文章目录 前言一、连接Wifi1.1 创建STA接口1.2 激活wifi接口1.3 连接WIFI1.4 判断WIFI是否连接1.5 连接WIFI总体代码 二、创建TCP 客户端2.1 创建套接字2.2 设置TCP服务器的ip地址和端口2.3 连接TCP服务器2.3 发送数据2.4 接收数据2.5 断开连接2.6 示例代码 三、TCP服务器的创建…

JVM运行时数据区——运行时数据区及线程概述

文章目录 1、运行时数据区概述2、线程3、小结 内存是非常重要的系统资源&#xff0c;是硬盘和CPU的中间仓库及桥梁&#xff0c;承载着操作系统和应用程序的实时运行。JVM在程序执行期间把它所管理的内存分为若干个不同的数据区域。这些不同的数据区域可以分为两种类型&#xff…

Topaz Gigapixel AI:让每一张照片都焕发新生mac/win版

Topaz Gigapixel AI 是一款革命性的图像增强软件&#xff0c;它利用先进的人工智能技术&#xff0c;能够显著提升图像的分辨率和质量。无论是摄影爱好者还是专业摄影师&#xff0c;这款软件都能帮助他们将模糊的、低分辨率的照片转化为清晰、细腻的高分辨率图像。 Topaz Gigap…

【探索Linux】—— 强大的命令行工具 P.24(网络基础)

阅读导航 引言一、计算机网络背景1. 网络发展历史 二、认识 "协议"1. 网络协议概念2. 网络协议初识&#xff08;1&#xff09;协议分层&#xff08;2&#xff09;OSI参考模型&#xff08;Open Systems Interconnection Reference Model&#xff09;&#xff08;3&…

差分题练习(区间更新)

一、差分的特点和原理 对于一个数组a[]&#xff0c;差分数组diff[]的定义是: 对差分数组做前缀和可以还原为原数组: 利用差分数组可以实现快速的区间修改&#xff0c;下面是将区间[l, r]都加上x的方法: diff[l] x; diff[r 1] - x;在修改完成后&#xff0c;需要做前缀和恢复…

智慧应急:构建全方位、立体化的安全保障网络

一、引言 在信息化、智能化快速发展的今天&#xff0c;传统的应急管理模式已难以满足现代社会对安全保障的需求。智慧应急作为一种全新的安全管理模式&#xff0c;旨在通过集成物联网、大数据、云计算、人工智能等先进技术&#xff0c;实现对应急事件的快速响应、精准决策和高…

【IDEA+通义灵码插件】实现属于你的大模型编程助手

目录 1.前言 2.下载安装 3.解释代码 4.生成单元测试 5.生成注释 6.智能补全 1.前言 大模型到底该以一种什么方式落地&#xff0c;从而嵌入我们的工作当中&#xff0c;助力我们工作效率的提升&#xff0c;其实最好的方式也许就是虚拟助手的方式&#xff0c;就像钢铁侠的&…

最新发布!2D激光雷达与相机数据融合的新方法

作者&#xff1a;小柠檬 | 编辑&#xff1a;3DCV 在公众号「3DCV」后台&#xff0c;回复「原论文」获取论文 添加微信&#xff1a;dddvision&#xff0c;备注&#xff1a;3D高斯&#xff0c;拉你入群。文末附行业细分群 原文&#xff1a;最新发布&#xff01;2D激光雷达与相…

【飞桨EasyDL】飞桨EasyDL发布的模型转换onnx(附工程代码)

一个愿意伫立在巨人肩膀上的农民...... 一、paddle转onnx转rknn环境搭建 paddle转onnx和onnx转rknn两个环境可以分开搭建&#xff0c;也可以搭建在一起。这里选择分开搭建&#xff0c;先搭建paddle转onnx。 1.1、创建环境 选择python3.8.13包进行创建环境 conda create --nam…

SQL 练习题目(入门级)

今天发现了一个练习SQL的网站--牛客网。里面题目挺多的&#xff0c;按照入门、简单、中等、困难进行了分类&#xff0c;可以直接在线输入SQL语句验证是否正确&#xff0c;并且提供了测试表的创建语句&#xff0c;也可以方便自己拓展练习&#xff0c;感觉还是很不错的一个网站&a…

项目实战:Qt监测操作系统物理网卡通断v1.1.0(支持windows、linux、国产麒麟系统)

若该文为原创文章&#xff0c;转载请注明出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/136276999 红胖子(红模仿)的博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结…

Logic Pro:专业音乐制作软件,为你的音乐插上翅膀

Logic Pro是一款功能强大的音乐制作软件&#xff0c;专为专业音乐人和音乐爱好者设计。它提供了全面的音乐创作工具&#xff0c;包括音频录音、编辑、混音、合成以及自动化等功能&#xff0c;让你能够轻松实现音乐梦想。 Logic Pro软件获取 首先&#xff0c;Logic Pro拥有卓越…

使用 Azure 部署静态网页

Author&#xff1a;AXYZdong 硕士在读 工科男 有一点思考&#xff0c;有一点想法&#xff0c;有一点理性&#xff01; 定个小小目标&#xff0c;努力成为习惯&#xff01;在最美的年华遇见更好的自己&#xff01; CSDNAXYZdong&#xff0c;CSDN首发&#xff0c;AXYZdong原创 唯…

【airtest】自动化入门教程(一)AirtestIDE

目录 一、下载与安装 1、下载 2、安装 3、打开软件 二、web自动化配置 1、配置chrome浏览器 2、窗口勾选selenium window 三、新建项目&#xff08;web&#xff09; 1、新建一个Airtest项目 2、初始化代码 3、打开一个网页 四、恢复默认布局 五、新建项目&#xf…

[业务系统]人物坐骑系统介绍I

1.问题描述 旧版本的坐骑系统依赖于人物装备了【法宝】&#xff08;一种装备类型&#xff09;&#xff0c;装备了法宝的人物变拥有了【幻化】坐骑的能力&#xff0c;即在人物装备栏中的【外观】中会有已经幻化和未幻化&#xff08;解锁&#xff09;的坐骑。如果玩家至少幻化一…

基于R语言的分位数回归技术应用

回归是科研中最常见的统计学研究方法之一&#xff0c;在研究变量间关系方面有着极其广泛的应用。由于其基本假设的限制&#xff0c;包括线性回归及广义线性回归在内的各种常见的回归方法都有三个重大缺陷&#xff1a;(1)对于异常值非常敏感&#xff0c;极少量的异常值可能导致结…

(全部习题答案)研究生英语读写教程基础级教师用书PDF|| 研究生英语读写教程提高级教师用书PDF

研究生英语读写教程基础级教师用书PDF 研究生英语读写教程提高级教师用书PDF pdf下载&#xff08;完整版下载&#xff09; &#xff08;1&#xff09;研究生英语读写教程基础级教师用书PDF &#xff08;2&#xff09;研究生英语读写教程基提高级教师用书PDF

【C++那些事儿】深入理解C++类与对象:从概念到实践(中)| 默认构造函数 | 拷贝构造函数 | 析构函数 | 运算符重载 | const成员函数

&#x1f4f7; 江池俊&#xff1a; 个人主页 &#x1f525;个人专栏&#xff1a; ✅数据结构冒险记 ✅C那些事儿 &#x1f305; 有航道的人&#xff0c;再渺小也不会迷途。 文章目录 1. 类的6个默认成员函数2. 构造函数2.1 概念2.2 特性 3. 析构函数3.1 概念3.2 特性 4. 拷贝…

GO-接口

1. 接口 在Go语言中接口&#xff08;interface&#xff09;是一种类型&#xff0c;一种抽象的类型。 interface是一组method的集合&#xff0c;接口做的事情就像是定义一个协议&#xff08;规则&#xff09;&#xff0c;只要一台机器有洗衣服和甩干的功能&#xff0c;我就称它…

基于springboot+vue的工厂车间管理系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…