Vins-Moon配准运行

Vins-Moon运行

  • 求助!!!
  • 源码地址
  • 电脑配置
  • 环境配置
  • 编译
  • Kitti数据集制作
    • IMU时间戳问题
  • 适配Kitti数据集
  • 运行结果
    • Euroc数据集
    • kitti数据集
  • evo评估(KITTI数据)
    • 输出轨迹(tum格式)
    • 结果
  • 求助!!!

求助!!!

跑了vinsmoon在kitti_2011_10_03_0034上,出现big translation,然后重启的问题。想请问下大家怎么理解这个问题,然后从rviz上看重启之后是因为重启代码的问题导致轨迹再次从初始点开始了,这个是不是需要修改代码解决?有想讨论的朋友或者大佬可以私信我,也可以私信加联系方式,感谢!!!

源码地址

源码链接:https://github.com/HKUST-Aerial-Robotics/VINS-Mono.git

电脑配置

Ubuntu 18.04 + ROS Melodic + GTSAM 4.0.2 + CERES 1.14.0
pcl1.8+vtk8.2.0+opencv3.2.0

环境配置

之前已经配置过LVI-SAM的环境,所以没有什么额外需要配置的(可参考之前的博客)

编译

 cd ~/catkin_ws/srcgit clone https://github.com/HKUST-Aerial-Robotics/VINS-Mono.gitcd ..catkin_make -j2

注:直接catkin_make会死机

Kitti数据集制作

参考链接:
1.https://blog.csdn.net/GuanLingde/article/details/133938758?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-133938758-blog-127442772.235%5Ev43%5Econtrol&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-133938758-blog-127442772.235%5Ev43%5Econtrol&utm_relevant_index=2
2.https://zhuanlan.zhihu.com/p/115562083

IMU时间戳问题

首先用*_extract/oxts文件夹把*_sync/oxt的文件夹替换掉
KITTI提供的的原始的IMU数据的时间戳存在断续和逆序的情况,只能解决逆序情况,断续问题无法解决, 通过下面的程序查看断续的和逆序的IMU时间戳,并对逆序的IMU数据的时间戳进行手动修改

import datetime as dt
import glob
import os
import matplotlib.pyplot as plt
import numpy as npdata_path = "/home/nssc/sbk/code/slam/datasets/kitti2bag/modify/2011_10_03_drive_0034_sync"
def load_timestamps(data='oxts'):"""Load timestamps from file."""timestamp_file = os.path.join(data_path, data, 'timestamps.txt')# Read and parse the timestampstimestamps = []with open(timestamp_file, 'r') as f:for line in f.readlines():# NB: datetime only supports microseconds, but KITTI timestamps# give nanoseconds, so need to truncate last 4 characters to# get rid of \n (counts as 1) and extra 3 digitst = dt.datetime.strptime(line[:-4], '%Y-%m-%d %H:%M:%S.%f')t = dt.datetime.timestamp(t)timestamps.append(t)# Subselect the chosen range of frames, if anyreturn timestamps
timestamps = np.array(load_timestamps())
x = np.arange(0, len(timestamps))last_timestamp = timestamps[:-1]
curr_timestamp = timestamps[1:]
dt = np.array(curr_timestamp - last_timestamp) #计算前后帧时间差print("dt > 0.015: \n{}".format(dt[dt> 0.015])) # 打印前后帧时间差大于0.015的IMU index
dt = dt.tolist()
dt.append(0.01)
dt = np.array(dt)
print("dt > 0.015: \n{}".format(x[dt> 0.015])) # 打印时间差大于0.015的具体时间差
plt.plot(x, timestamps, 'r', label='imu')# 可视化IMU的时间戳
plt.show()

在这里插入图片描述
打开timestamps.txt文件,分别找到
380 4890 7833 32773 33734 34035 34539 38553行,手动修改时间戳
如380行:
在这里插入图片描述
依次按顺序把时间加0.01,改完后:
在这里插入图片描述运行kitti2bag.py
LIO-SAM中有config/doc/kitti2bag.py的工具文件
注:如果手动替换了文件夹,则注释掉这行代码 unsynced_path = synced_path.replace(‘sync’, ‘extract’)

python kitti2bag.py -t 2011_10_03 -r 0034 raw_synced .

在这里插入图片描述

#!env python
# -*- coding: utf-8 -*-import systry:import pykitti
except ImportError as e:print('Could not load module \'pykitti\'. Please run `pip install pykitti`')sys.exit(1)import tf
import os
import cv2
import rospy
import rosbag
from tqdm import tqdm
from tf2_msgs.msg import TFMessage
from datetime import datetime
from std_msgs.msg import Header
from sensor_msgs.msg import CameraInfo, Imu, PointField, NavSatFix
import sensor_msgs.point_cloud2 as pcl2
from geometry_msgs.msg import TransformStamped, TwistStamped, Transform
from cv_bridge import CvBridge
import numpy as np
import argparsedef save_imu_data(bag, kitti, imu_frame_id, topic):print("Exporting IMU")for timestamp, oxts in zip(kitti.timestamps, kitti.oxts):q = tf.transformations.quaternion_from_euler(oxts.packet.roll, oxts.packet.pitch, oxts.packet.yaw)imu = Imu()imu.header.frame_id = imu_frame_idimu.header.stamp = rospy.Time.from_sec(float(timestamp.strftime("%s.%f")))imu.orientation.x = q[0]imu.orientation.y = q[1]imu.orientation.z = q[2]imu.orientation.w = q[3]imu.linear_acceleration.x = oxts.packet.afimu.linear_acceleration.y = oxts.packet.alimu.linear_acceleration.z = oxts.packet.auimu.angular_velocity.x = oxts.packet.wfimu.angular_velocity.y = oxts.packet.wlimu.angular_velocity.z = oxts.packet.wubag.write(topic, imu, t=imu.header.stamp)def save_imu_data_raw(bag, kitti, imu_frame_id, topic):print("Exporting IMU Raw")synced_path = kitti.data_path# unsynced_path = synced_path.replace('sync', 'extract')imu_path = os.path.join(synced_path, 'oxts')# read time stamp (convert to ros seconds format)with open(os.path.join(imu_path, 'timestamps.txt')) as f:lines = f.readlines()imu_datetimes = []for line in lines:if len(line) == 1:continuetimestamp = datetime.strptime(line[:-4], '%Y-%m-%d %H:%M:%S.%f')imu_datetimes.append(float(timestamp.strftime("%s.%f")))# fix imu time using a linear model (may not be ideal, ^_^)imu_index = np.asarray(range(len(imu_datetimes)), dtype=np.float64)z = np.polyfit(imu_index, imu_datetimes, 1)imu_datetimes_new = z[0] * imu_index + z[1]imu_datetimes = imu_datetimes_new.tolist()# get all imu dataimu_data_dir = os.path.join(imu_path, 'data')imu_filenames = sorted(os.listdir(imu_data_dir))imu_data = [None] * len(imu_filenames)for i, imu_file in enumerate(imu_filenames):imu_data_file = open(os.path.join(imu_data_dir, imu_file), "r")for line in imu_data_file:if len(line) == 1:continuestripped_line = line.strip()line_list = stripped_line.split()imu_data[i] = line_listassert len(imu_datetimes) == len(imu_data)for timestamp, data in zip(imu_datetimes, imu_data):roll, pitch, yaw = float(data[3]), float(data[4]), float(data[5]), q = tf.transformations.quaternion_from_euler(roll, pitch, yaw)imu = Imu()imu.header.frame_id = imu_frame_idimu.header.stamp = rospy.Time.from_sec(timestamp)imu.orientation.x = q[0]imu.orientation.y = q[1]imu.orientation.z = q[2]imu.orientation.w = q[3]imu.linear_acceleration.x = float(data[11])imu.linear_acceleration.y = float(data[12])imu.linear_acceleration.z = float(data[13])imu.angular_velocity.x = float(data[17])imu.angular_velocity.y = float(data[18])imu.angular_velocity.z = float(data[19])bag.write(topic, imu, t=imu.header.stamp)imu.header.frame_id = 'imu_enu_link'bag.write('/imu_correct', imu, t=imu.header.stamp) # for LIO-SAM GPSdef save_dynamic_tf(bag, kitti, kitti_type, initial_time):print("Exporting time dependent transformations")if kitti_type.find("raw") != -1:for timestamp, oxts in zip(kitti.timestamps, kitti.oxts):tf_oxts_msg = TFMessage()tf_oxts_transform = TransformStamped()tf_oxts_transform.header.stamp = rospy.Time.from_sec(float(timestamp.strftime("%s.%f")))tf_oxts_transform.header.frame_id = 'world'tf_oxts_transform.child_frame_id = 'base_link'transform = (oxts.T_w_imu)t = transform[0:3, 3]q = tf.transformations.quaternion_from_matrix(transform)oxts_tf = Transform()oxts_tf.translation.x = t[0]oxts_tf.translation.y = t[1]oxts_tf.translation.z = t[2]oxts_tf.rotation.x = q[0]oxts_tf.rotation.y = q[1]oxts_tf.rotation.z = q[2]oxts_tf.rotation.w = q[3]tf_oxts_transform.transform = oxts_tftf_oxts_msg.transforms.append(tf_oxts_transform)bag.write('/tf', tf_oxts_msg, tf_oxts_msg.transforms[0].header.stamp)elif kitti_type.find("odom") != -1:timestamps = map(lambda x: initial_time + x.total_seconds(), kitti.timestamps)for timestamp, tf_matrix in zip(timestamps, kitti.T_w_cam0):tf_msg = TFMessage()tf_stamped = TransformStamped()tf_stamped.header.stamp = rospy.Time.from_sec(timestamp)tf_stamped.header.frame_id = 'world'tf_stamped.child_frame_id = 'camera_left't = tf_matrix[0:3, 3]q = tf.transformations.quaternion_from_matrix(tf_matrix)transform = Transform()transform.translation.x = t[0]transform.translation.y = t[1]transform.translation.z = t[2]transform.rotation.x = q[0]transform.rotation.y = q[1]transform.rotation.z = q[2]transform.rotation.w = q[3]tf_stamped.transform = transformtf_msg.transforms.append(tf_stamped)bag.write('/tf', tf_msg, tf_msg.transforms[0].header.stamp)def save_camera_data(bag, kitti_type, kitti, util, bridge, camera, camera_frame_id, topic, initial_time):print("Exporting camera {}".format(camera))if kitti_type.find("raw") != -1:camera_pad = '{0:02d}'.format(camera)image_dir = os.path.join(kitti.data_path, 'image_{}'.format(camera_pad))image_path = os.path.join(image_dir, 'data')image_filenames = sorted(os.listdir(image_path))with open(os.path.join(image_dir, 'timestamps.txt')) as f:image_datetimes = map(lambda x: datetime.strptime(x[:-4], '%Y-%m-%d %H:%M:%S.%f'), f.readlines())calib = CameraInfo()calib.header.frame_id = camera_frame_idcalib.width, calib.height = tuple(util['S_rect_{}'.format(camera_pad)].tolist())calib.distortion_model = 'plumb_bob'calib.K = util['K_{}'.format(camera_pad)]calib.R = util['R_rect_{}'.format(camera_pad)]calib.D = util['D_{}'.format(camera_pad)]calib.P = util['P_rect_{}'.format(camera_pad)]elif kitti_type.find("odom") != -1:camera_pad = '{0:01d}'.format(camera)image_path = os.path.join(kitti.sequence_path, 'image_{}'.format(camera_pad))image_filenames = sorted(os.listdir(image_path))image_datetimes = map(lambda x: initial_time + x.total_seconds(), kitti.timestamps)calib = CameraInfo()calib.header.frame_id = camera_frame_idcalib.P = util['P{}'.format(camera_pad)]iterable = zip(image_datetimes, image_filenames)for dt, filename in tqdm(iterable, total=len(image_filenames)):image_filename = os.path.join(image_path, filename)cv_image = cv2.imread(image_filename)calib.height, calib.width = cv_image.shape[:2]if camera in (0, 1):cv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)encoding = "mono8" if camera in (0, 1) else "bgr8"image_message = bridge.cv2_to_imgmsg(cv_image, encoding=encoding)image_message.header.frame_id = camera_frame_idif kitti_type.find("raw") != -1:image_message.header.stamp = rospy.Time.from_sec(float(datetime.strftime(dt, "%s.%f")))topic_ext = "/image_raw"elif kitti_type.find("odom") != -1:image_message.header.stamp = rospy.Time.from_sec(dt)topic_ext = "/image_rect"calib.header.stamp = image_message.header.stampbag.write(topic + topic_ext, image_message, t = image_message.header.stamp)bag.write(topic + '/camera_info', calib, t = calib.header.stamp) def save_velo_data(bag, kitti, velo_frame_id, topic):print("Exporting velodyne data")velo_path = os.path.join(kitti.data_path, 'velodyne_points')velo_data_dir = os.path.join(velo_path, 'data')velo_filenames = sorted(os.listdir(velo_data_dir))with open(os.path.join(velo_path, 'timestamps.txt')) as f:lines = f.readlines()velo_datetimes = []for line in lines:if len(line) == 1:continuedt = datetime.strptime(line[:-4], '%Y-%m-%d %H:%M:%S.%f')velo_datetimes.append(dt)iterable = zip(velo_datetimes, velo_filenames)count = 0for dt, filename in tqdm(iterable, total=len(velo_filenames)):if dt is None:continuevelo_filename = os.path.join(velo_data_dir, filename)# read binary datascan = (np.fromfile(velo_filename, dtype=np.float32)).reshape(-1, 4)# get ring channeldepth = np.linalg.norm(scan, 2, axis=1)pitch = np.arcsin(scan[:, 2] / depth) # arcsin(z, depth)fov_down = -24.8 / 180.0 * np.pifov = (abs(-24.8) + abs(2.0)) / 180.0 * np.piproj_y = (pitch + abs(fov_down)) / fov  # in [0.0, 1.0]proj_y *= 64  # in [0.0, H]proj_y = np.floor(proj_y)proj_y = np.minimum(64 - 1, proj_y)proj_y = np.maximum(0, proj_y).astype(np.int32)  # in [0,H-1]proj_y = proj_y.reshape(-1, 1)scan = np.concatenate((scan,proj_y), axis=1)scan = scan.tolist()for i in range(len(scan)):scan[i][-1] = int(scan[i][-1])# create headerheader = Header()header.frame_id = velo_frame_idheader.stamp = rospy.Time.from_sec(float(datetime.strftime(dt, "%s.%f")))# fill pcl msgfields = [PointField('x', 0, PointField.FLOAT32, 1),PointField('y', 4, PointField.FLOAT32, 1),PointField('z', 8, PointField.FLOAT32, 1),PointField('intensity', 12, PointField.FLOAT32, 1),PointField('ring', 16, PointField.UINT16, 1)]pcl_msg = pcl2.create_cloud(header, fields, scan)pcl_msg.is_dense = True# print(pcl_msg)bag.write(topic, pcl_msg, t=pcl_msg.header.stamp)# count += 1# if count > 200:#     breakdef get_static_transform(from_frame_id, to_frame_id, transform):t = transform[0:3, 3]q = tf.transformations.quaternion_from_matrix(transform)tf_msg = TransformStamped()tf_msg.header.frame_id = from_frame_idtf_msg.child_frame_id = to_frame_idtf_msg.transform.translation.x = float(t[0])tf_msg.transform.translation.y = float(t[1])tf_msg.transform.translation.z = float(t[2])tf_msg.transform.rotation.x = float(q[0])tf_msg.transform.rotation.y = float(q[1])tf_msg.transform.rotation.z = float(q[2])tf_msg.transform.rotation.w = float(q[3])return tf_msgdef inv(transform):"Invert rigid body transformation matrix"R = transform[0:3, 0:3]t = transform[0:3, 3]t_inv = -1 * R.T.dot(t)transform_inv = np.eye(4)transform_inv[0:3, 0:3] = R.Ttransform_inv[0:3, 3] = t_invreturn transform_invdef save_static_transforms(bag, transforms, timestamps):print("Exporting static transformations")tfm = TFMessage()for transform in transforms:t = get_static_transform(from_frame_id=transform[0], to_frame_id=transform[1], transform=transform[2])tfm.transforms.append(t)for timestamp in timestamps:time = rospy.Time.from_sec(float(timestamp.strftime("%s.%f")))for i in range(len(tfm.transforms)):tfm.transforms[i].header.stamp = timebag.write('/tf_static', tfm, t=time)def save_gps_fix_data(bag, kitti, gps_frame_id, topic):for timestamp, oxts in zip(kitti.timestamps, kitti.oxts):navsatfix_msg = NavSatFix()navsatfix_msg.header.frame_id = gps_frame_idnavsatfix_msg.header.stamp = rospy.Time.from_sec(float(timestamp.strftime("%s.%f")))navsatfix_msg.latitude = oxts.packet.latnavsatfix_msg.longitude = oxts.packet.lonnavsatfix_msg.altitude = oxts.packet.altnavsatfix_msg.status.service = 1bag.write(topic, navsatfix_msg, t=navsatfix_msg.header.stamp)def save_gps_vel_data(bag, kitti, gps_frame_id, topic):for timestamp, oxts in zip(kitti.timestamps, kitti.oxts):twist_msg = TwistStamped()twist_msg.header.frame_id = gps_frame_idtwist_msg.header.stamp = rospy.Time.from_sec(float(timestamp.strftime("%s.%f")))twist_msg.twist.linear.x = oxts.packet.vftwist_msg.twist.linear.y = oxts.packet.vltwist_msg.twist.linear.z = oxts.packet.vutwist_msg.twist.angular.x = oxts.packet.wftwist_msg.twist.angular.y = oxts.packet.wltwist_msg.twist.angular.z = oxts.packet.wubag.write(topic, twist_msg, t=twist_msg.header.stamp)if __name__ == "__main__":parser = argparse.ArgumentParser(description = "Convert KITTI dataset to ROS bag file the easy way!")# Accepted argument valueskitti_types = ["raw_synced", "odom_color", "odom_gray"]odometry_sequences = []for s in range(22):odometry_sequences.append(str(s).zfill(2))parser.add_argument("kitti_type", choices = kitti_types, help = "KITTI dataset type")parser.add_argument("dir", nargs = "?", default = os.getcwd(), help = "base directory of the dataset, if no directory passed the deafult is current working directory")parser.add_argument("-t", "--date", help = "date of the raw dataset (i.e. 2011_09_26), option is only for RAW datasets.")parser.add_argument("-r", "--drive", help = "drive number of the raw dataset (i.e. 0001), option is only for RAW datasets.")parser.add_argument("-s", "--sequence", choices = odometry_sequences,help = "sequence of the odometry dataset (between 00 - 21), option is only for ODOMETRY datasets.")args = parser.parse_args()bridge = CvBridge()compression = rosbag.Compression.NONE# compression = rosbag.Compression.BZ2# compression = rosbag.Compression.LZ4# CAMERAScameras = [(0, 'camera_gray_left', '/kitti/camera_gray_left'),(1, 'camera_gray_right', '/kitti/camera_gray_right'),(2, 'camera_color_left', '/kitti/camera_color_left'),(3, 'camera_color_right', '/kitti/camera_color_right')]if args.kitti_type.find("raw") != -1:if args.date == None:print("Date option is not given. It is mandatory for raw dataset.")print("Usage for raw dataset: kitti2bag raw_synced [dir] -t <date> -r <drive>")sys.exit(1)elif args.drive == None:print("Drive option is not given. It is mandatory for raw dataset.")print("Usage for raw dataset: kitti2bag raw_synced [dir] -t <date> -r <drive>")sys.exit(1)bag = rosbag.Bag("kitti_{}_drive_{}_{}.bag".format(args.date, args.drive, args.kitti_type[4:]), 'w', compression=compression)kitti = pykitti.raw(args.dir, args.date, args.drive)if not os.path.exists(kitti.data_path):print('Path {} does not exists. Exiting.'.format(kitti.data_path))sys.exit(1)if len(kitti.timestamps) == 0:print('Dataset is empty? Exiting.')sys.exit(1)try:# IMUimu_frame_id = 'imu_link'imu_topic = '/kitti/oxts/imu'imu_raw_topic = '/imu_raw'gps_fix_topic = '/gps/fix'gps_vel_topic = '/gps/vel'velo_frame_id = 'velodyne'velo_topic = '/points_raw'T_base_link_to_imu = np.eye(4, 4)T_base_link_to_imu[0:3, 3] = [-2.71/2.0-0.05, 0.32, 0.93]# tf_statictransforms = [('base_link', imu_frame_id, T_base_link_to_imu),(imu_frame_id, velo_frame_id, inv(kitti.calib.T_velo_imu)),(imu_frame_id, cameras[0][1], inv(kitti.calib.T_cam0_imu)),(imu_frame_id, cameras[1][1], inv(kitti.calib.T_cam1_imu)),(imu_frame_id, cameras[2][1], inv(kitti.calib.T_cam2_imu)),(imu_frame_id, cameras[3][1], inv(kitti.calib.T_cam3_imu))]util = pykitti.utils.read_calib_file(os.path.join(kitti.calib_path, 'calib_cam_to_cam.txt'))# Export# save_static_transforms(bag, transforms, kitti.timestamps)# save_dynamic_tf(bag, kitti, args.kitti_type, initial_time=None)# save_imu_data(bag, kitti, imu_frame_id, imu_topic)save_imu_data_raw(bag, kitti, imu_frame_id, imu_raw_topic)save_gps_fix_data(bag, kitti, imu_frame_id, gps_fix_topic)save_gps_vel_data(bag, kitti, imu_frame_id, gps_vel_topic)for camera in cameras:save_camera_data(bag, args.kitti_type, kitti, util, bridge, camera=camera[0], camera_frame_id=camera[1], topic=camera[2], initial_time=None)breaksave_velo_data(bag, kitti, velo_frame_id, velo_topic)finally:print("## OVERVIEW ##")print(bag)bag.close()elif args.kitti_type.find("odom") != -1:if args.sequence == None:print("Sequence option is not given. It is mandatory for odometry dataset.")print("Usage for odometry dataset: kitti2bag {odom_color, odom_gray} [dir] -s <sequence>")sys.exit(1)bag = rosbag.Bag("kitti_data_odometry_{}_sequence_{}.bag".format(args.kitti_type[5:],args.sequence), 'w', compression=compression)kitti = pykitti.odometry(args.dir, args.sequence)if not os.path.exists(kitti.sequence_path):print('Path {} does not exists. Exiting.'.format(kitti.sequence_path))sys.exit(1)kitti.load_calib()         kitti.load_timestamps() if len(kitti.timestamps) == 0:print('Dataset is empty? Exiting.')sys.exit(1)if args.sequence in odometry_sequences[:11]:print("Odometry dataset sequence {} has ground truth information (poses).".format(args.sequence))kitti.load_poses()try:util = pykitti.utils.read_calib_file(os.path.join(args.dir,'sequences',args.sequence, 'calib.txt'))current_epoch = (datetime.utcnow() - datetime(1970, 1, 1)).total_seconds()# Exportif args.kitti_type.find("gray") != -1:used_cameras = cameras[:2]elif args.kitti_type.find("color") != -1:used_cameras = cameras[-2:]save_dynamic_tf(bag, kitti, args.kitti_type, initial_time=current_epoch)for camera in used_cameras:save_camera_data(bag, args.kitti_type, kitti, util, bridge, camera=camera[0], camera_frame_id=camera[1], topic=camera[2], initial_time=current_epoch)finally:print("## OVERVIEW ##")print(bag)bag.close()

在这里插入图片描述

适配Kitti数据集

在config文件夹下新建kitti文件夹
新建kitti_config.yaml文件
(具体参数设置的方式,可以参考之前LVI-SAM博客)

%YAML:1.0#common parameters
imu_topic: "/imu_raw"   #"/kitti/oxts/imu"
image_topic: "/kitti/camera_gray_left/image_raw"
output_path: "/home/nssc/sbk/outputs/map/vinsmoon/"#camera calibration 
model_type: PINHOLE
camera_name: camera0
#10_03
# image_width: 1241
# image_height: 376
# 09_30
image_width: 1226
image_height: 370
distortion_parameters:k1: 0.0k2: 0.0p1: 0.0p2: 0.0
projection_parameters:
# 10_03
#   fx: 7.188560e+02
#   fy: 7.188560e+02
#   cx: 6.071928e+02
#   cy: 1.852157e+02# 09_30fx: 7.070912e+02fy: 7.070912e+02cx: 6.018873e+02cy: 1.831104e+02# Extrinsic parameter between IMU and Camera.
estimate_extrinsic: 0   # 0  Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it.# 1  Have an initial guess about extrinsic parameters. We will optimize around your initial guess.# 2  Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning.                        
#If you choose 0 or 1, you should write down the following matrix.
#Rotation from camera frame to imu frame, imu^R_cam
extrinsicRotation: !!opencv-matrixrows: 3cols: 3dt: d#  10_03# data: [0.00875116, -0.00479609,  0.99995027, -0.99986428, -0.01400249,  0.00868325, 0.01396015, -0.99989044, -0.00491798]#  09_30data: [0.00781298, -0.0042792,  0.99996033,-0.99985947, -0.01486805,  0.00774856, 0.0148343 , -0.99988023, -0.00439476]     #Translation from camera frame to imu frame, imu^T_cam
extrinsicTranslation: !!opencv-matrixrows: 3cols: 1dt: d#  10_03# data: [1.10224312,-0.31907194,  0.74606588]
#09_30 data: [1.14389871,-0.31271847,  0.72654605]#feature traker paprameters
max_cnt: 150            # max feature number in feature tracking
min_dist: 30            # min distance between two features 
freq: 10                # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image 
F_threshold: 1.0        # ransac threshold (pixel)
show_track: 1           # publish tracking image as topic
equalize: 1             # if image is too dark or light, trun on equalize to find enough features
fisheye: 0              # if using fisheye, trun on it. A circle mask will be loaded to remove edge noisy points#optimization parameters
max_solver_time: 0.04  # max solver itration time (ms), to guarantee real time
max_num_iterations: 8   # max solver itrations, to guarantee real time
keyframe_parallax: 10.0 # keyframe selection threshold (pixel)#imu parameters       The more accurate parameters you provide, the better performance
acc_n: 0.08          # accelerometer measurement noise standard deviation. #0.2   0.04
gyr_n: 0.004         # gyroscope measurement noise standard deviation.     #0.05  0.004
acc_w: 0.00004         # accelerometer bias random work noise standard deviation.  #0.02
gyr_w: 2.0e-6       # gyroscope bias random work noise standard deviation.     #4.0e-5
g_norm: 9.81007     # gravity magnitude#loop closure parameters
loop_closure: 1                    # start loop closure
load_previous_pose_graph: 0        # load and reuse previous pose graph; load from 'pose_graph_save_path'
fast_relocalization: 0             # useful in real-time and large project
pose_graph_save_path: "/home/nssc/sbk/outputs/map/vinsmoon/pose_graph/" # save and load path#unsynchronization parameters
estimate_td: 0                      # online estimate time offset between camera and imu
td: 0.0                             # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock)#rolling shutter parameters
rolling_shutter: 0                  # 0: global shutter camera, 1: rolling shutter camera
rolling_shutter_tr: 0               # unit: s. rolling shutter read out time per frame (from data sheet). #visualization parameters
save_image: 1                   # save image in pose graph for visualization prupose; you can close this function by setting 0 
visualize_imu_forward: 0        # output imu forward propogation to achieve low latency and high frequence results
visualize_camera_size: 0.4      # size of camera marker in RVIZ

在vins_estimator/launch/文件夹下新建文件kitti.launch
(主要修改一下config_path的路径)

<launch><arg name="config_path" default = "$(find feature_tracker)/../config/kitti/kitti_config.yaml" /><arg name="vins_path" default = "$(find feature_tracker)/../config/../" /><node name="feature_tracker" pkg="feature_tracker" type="feature_tracker" output="log"><param name="config_file" type="string" value="$(arg config_path)" /><param name="vins_folder" type="string" value="$(arg vins_path)" /></node><node name="vins_estimator" pkg="vins_estimator" type="vins_estimator" output="screen"><param name="config_file" type="string" value="$(arg config_path)" /><param name="vins_folder" type="string" value="$(arg vins_path)" /></node><node name="pose_graph" pkg="pose_graph" type="pose_graph" output="screen"><param name="config_file" type="string" value="$(arg config_path)" /><param name="visualization_shift_x" type="int" value="0" /><param name="visualization_shift_y" type="int" value="0" /><param name="skip_cnt" type="int" value="0" /><param name="skip_dis" type="double" value="0" /></node></launch>

运行结果

Euroc数据集

 roslaunch vins_estimator euroc.launch roslaunch vins_estimator vins_rviz.launchrosbag play YOUR_PATH_TO_DATASET/MH_01_easy.bag 

在这里插入图片描述同时看到groundtrue:

roslaunch benchmark_publisher publish.launch sequence_name:=MH_01_easy

在这里插入图片描述

kitti数据集

有关kitti数据集生成bag包的方式,可参考之前生成LVI-SAM适配数据的博客

 roslaunch vins_estimator kitti.launch roslaunch vins_estimator vins_rviz.launchrosbag play kitti_2011_09_30_drive_0027_synced.bag

在这里插入图片描述

evo评估(KITTI数据)

输出轨迹(tum格式)

vins_estimator/src/utility/visualization.cpp
pubOdometry()函数150+行

        // write result to file// ofstream foutC(VINS_RESULT_PATH, ios::app);// foutC.setf(ios::fixed, ios::floatfield);// foutC.precision(0);// foutC << header.stamp.toSec() * 1e9 << ",";// foutC.precision(5);// foutC << estimator.Ps[WINDOW_SIZE].x() << ","//       << estimator.Ps[WINDOW_SIZE].y() << ","//       << estimator.Ps[WINDOW_SIZE].z() << ","//       << tmp_Q.w() << ","//       << tmp_Q.x() << ","//       << tmp_Q.y() << ","//       << tmp_Q.z() << ","//       << estimator.Vs[WINDOW_SIZE].x() << ","//       << estimator.Vs[WINDOW_SIZE].y() << ","//       << estimator.Vs[WINDOW_SIZE].z() << "," << endl;ofstream foutC(VINS_RESULT_PATH, ios::app);foutC.setf(ios::fixed, ios::floatfield);foutC.precision(9);foutC << header.stamp.toSec() << " ";foutC.precision(5);foutC << estimator.Ps[WINDOW_SIZE].x() << " "<< estimator.Ps[WINDOW_SIZE].y() << " "<< estimator.Ps[WINDOW_SIZE].z() << " "<< tmp_Q.x() << " "<< tmp_Q.y() << " "<< tmp_Q.z() << " "<< tmp_Q.w() << endl;foutC.close();

pose_graph/src/pose_graph.cpp
addKeyFrame()函数150+行

    if (SAVE_LOOP_PATH){// ofstream loop_path_file(VINS_RESULT_PATH, ios::app);// loop_path_file.setf(ios::fixed, ios::floatfield);// loop_path_file.precision(0);// loop_path_file << cur_kf->time_stamp * 1e9 << ",";// loop_path_file.precision(5);// loop_path_file  << P.x() << ","//       << P.y() << ","//       << P.z() << ","//       << Q.w() << ","//       << Q.x() << ","//       << Q.y() << ","//       << Q.z() << ","//      << endl;ofstream loop_path_file(VINS_RESULT_PATH, ios::app);loop_path_file.setf(ios::fixed, ios::floatfield);loop_path_file.precision(0);loop_path_file << cur_kf->time_stamp << " ";loop_path_file.precision(5);loop_path_file  << P.x() << " "<< P.y() << " "<< P.z() << " "<< Q.x() << " "<< Q.y() << " "<< Q.z() << " "<< Q.w() << endl;    loop_path_file.close();}

updatePath()函数600+行

        if (SAVE_LOOP_PATH){// ofstream loop_path_file(VINS_RESULT_PATH, ios::app);// loop_path_file.setf(ios::fixed, ios::floatfield);// loop_path_file.precision(0);// loop_path_file << (*it)->time_stamp * 1e9 << ",";// loop_path_file.precision(5);// loop_path_file  << P.x() << ","//       << P.y() << ","//       << P.z() << ","//       << Q.w() << ","//       << Q.x() << ","//       << Q.y() << ","//       << Q.z() << ","//       << endl;ofstream loop_path_file(VINS_RESULT_PATH, ios::app);loop_path_file.setf(ios::fixed, ios::floatfield);loop_path_file.precision(0);loop_path_file << (*it)->time_stamp << " ";loop_path_file.precision(5);loop_path_file  << P.x() << " "<< P.y() << " "<< P.z() << " "<< Q.x() << " "<< Q.y() << " "<< Q.z() << " "<< Q.w() << endl;loop_path_file.close();}

pose_graph_node.cpp中的main()函数

       # VINS_RESULT_PATH = VINS_RESULT_PATH + "/vins_result_loop.csv";VINS_RESULT_PATH = VINS_RESULT_PATH + "/vins_result_loop.txt";

对输出的vins_result_loop.txt文件修改时间戳

# 读取txt文件
with open('vins_result_loop.txt', 'r') as file:lines = file.readlines()# 处理数据
first_line = lines[0].strip().split()
first_num = int(first_line[0])
output_lines = []
for line in lines[0:]:parts = line.split()new_num = float(parts[0]) - first_numnew_line = str(new_num)  +' '+ ' '.join(parts[1:]) + '\n'output_lines.append(new_line)# 写入txt文件
with open('output.txt', 'w') as file:for line in output_lines:file.write(''.join(line))

结果

evo_traj tum output.txt 07_gt_tum.txt --ref=07_gt_tum.txt -a -p --plot_mode=xyz


在这里插入图片描述
在这里插入图片描述

求助!!!

跑了vinsmoon在kitti_2011_10_03_0034上,出现big translation,然后重启的问题。想请问下大家怎么理解这个问题,然后从rviz上看重启之后是因为重启代码的问题导致轨迹再次从初始点开始了,这个是不是需要修改代码解决?有想讨论的朋友或者大佬可以私信我,也可以私信加联系方式,感谢!!!

参考链接:
https://blog.csdn.net/m0_49066914/article/details/131814856
https://blog.csdn.net/Hanghang_/article/details/104535370
https://zhuanlan.zhihu.com/p/75672946

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/268221.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

React Switch用法及手写Switch实现

问&#xff1a;如果注册的路由特别多&#xff0c;找到一个匹配项以后还会一直往下找&#xff0c;我们想让react找到一个匹配项以后不再继续了&#xff0c;怎么处理&#xff1f;答&#xff1a;<Switch>独特之处在于它只绘制子元素中第一个匹配的路由元素。 如果没有<Sw…

【Prometheus】基于Altertmanager发送告警到多个接收方、监控各种服务、pushgateway

基于Altertmanager发送报警到多个接收方 一、配置alertmanager-发送告警到qq邮箱1.1、告警流程1.2、告警设置【1】邮箱配置【2】告警规则配置【3】 部署prometheus【4】部署service 二、配置alertmanager-发送告警到钉钉三、配置alertmanager-发送告警到企业微信3.1、注册企业微…

vue3基础教程(1)——nodejs环境搭建

博主个人小程序已经上线&#xff1a;【中二少年工具箱】 小程序二维如下&#xff1a; 正文开始 专栏简介1. 环境菜单2.为什么下载node3. nodejs简介4. nodejs安装5. 编辑器选择 专栏简介 本系列文章由浅入深&#xff0c;从基础知识到实战开发&#xff0c;非常适合入门同学。…

MySQL 面试题

MySQL 基础 数据库的约束与范式&#xff1f; 七大约束&#xff1a; 检查约束&#xff1a;以数据类型以及数据的长度进行约束&#xff0c;在一个表中&#xff0c; 所插入的数据&#xff0c;必须和数据类型匹配&#xff0c;并且范围不能超过指定的长度。非空约束 not null&…

第十四天-网络爬虫基础

目录 1.什么是爬虫 2.网络协议 OSI七层参考模型 TCP/IP模型 1.应用层 2.传输层 3.网络层 3.HTTP协议 1.介绍 2.http版本&#xff1a; 3.请求格式 4.请求方法 5.HTTP响应 状态码&#xff1a; 6.http如何连接 4.Python requests模块 1.安装 2.使用get/post 3.响…

动态规划5,粉刷房子,买卖股票的最佳时期

粉刷房子 思路&#xff1a; 1.经验题目要求 dp[i][0] 表示&#xff1a;粉刷到 i 位置的时候&#xff0c;最后一个位置粉刷上红色&#xff0c;此时的最小花费。 dp[i][1] 表示&#xff1a;粉刷到 i 位置的时候&#xff0c;最后一个位置粉刷上蓝色&#xff0c;此时的最小花费。…

java学习(常用类)

一、包装类&#xff08;针对八种基本数据类型相应的引用类型--包装类. 1)包装类和基本数据类型的相互转换 装箱&#xff1a;基本类型->包装类型 拆箱&#xff1a;包装类型->基本类型 //以下是int类型和char类型演示。 public class temp1 {public static void main(St…

TOMCAT的安装与基本信息

一、TOMCAT简介 Tomcat 服务器是一个免费的开放源代码的Web 应用服务器&#xff0c;属于轻量级应用服务器&#xff0c;在中小型系统和并发访问用户不是很多的场合下被普遍使用&#xff0c;是开发和调试JSP 程序的首选。对于一个初学者来说&#xff0c;可以这样认为&#xff0c…

Rust调用同级目录中的rs文件和调用下级目录中的rs文件

一、Rust调用同级目录中的rs文件 Rust新建工程demo02&#xff0c;src文件夹下面新建test.rs文件&#xff0c;这样main.rs文件与它属于同级目录中。 关键点&#xff1a;导入test文件和test文件中的Ellipse模块 mod test;//导入test模块&#xff08;文件&#xff09; use test…

MySQL-MHA搭建、故障测试

一、架构说明 MHA&#xff08;Master High Availability&#xff09;是一个用于 MySQL 主从复制管理和自动故障转移的开源工具集。MHA 的主要目的是提供 MySQL 环境的高可用性和自动故障转移功能&#xff0c;确保在主库发生故障时能够快速切换到备库&#xff0c;降低业务中断时…

Android 性能优化--APK加固(1)混淆

文章目录 为什么要开启混淆如何开启代码混淆如何开启资源压缩代码混淆配置代码混淆后&#xff0c;Crash 问题定位结尾 本文首发地址&#xff1a;https://h89.cn/archives/211.html 最新更新地址&#xff1a;https://gitee.com/chenjim/chenjimblog 为什么要开启混淆 先上一个 …

架构设计:生产消费模型

1. 引言 在现代软件系统中&#xff0c;处理大量数据和消息是一项重要的任务。生产消费模型作为一种经典的并发模式&#xff0c;在解决数据生产和消费之间的关系上发挥着关键作用。该模型通过有效地管理生产者和消费者之间的通信和数据流动&#xff0c;实现了系统组件之间的解耦…

LASSO算法

LASSO (Least Absolute Shrinkage and Selection Operator) 是一种回归分析的方法&#xff0c;它能够同时进行变量选择和正则化&#xff0c;以增强预测准确性和模型的解释性。LASSO通过在损失函数中加入一个L1惩罚项来实现这一点。该惩罚项对系数的绝对值进行约束。 基本概念 …

python中的类与对象(3)

目录 一. 类的多继承 二. 类的封装 三. 类的多态 四. 类与对象综合练习&#xff1a;校园管理系统 一. 类的多继承 在&#xff08;2&#xff09;第四节中我们介绍了什么是类的继承&#xff0c;在子类的括号里面写入要继承的父类名。上一节我们只在括号内写了一个父类名&…

【详识JAVA语言】面向对象程序三大特性之三:多态

多态 多态的概念 多态的概念&#xff1a;通俗来说&#xff0c;就是多种形态&#xff0c;具体点就是去完成某个行为&#xff0c;当不同的对象去完成时会产生出不同的状态。 多态实现条件 在java中要实现多态&#xff0c;必须要满足如下几个条件&#xff0c;缺一不可&#xf…

基于阿里云OSS上传图片实战案例

一、案例描述 基于Springboot框架实现一个上传图片到阿里云服务端保存的小案例。 二、准备工作 基于Springboot免费搭载轻量级阿里云OSS数据存储库&#xff08;将本地文本、照片、视频、音频等上传云服务保存&#xff09;-CSDN博客 三、代码 新建这两个类&#xff1a;一个…

【数据结构初阶】九、五种比较排序的讲解和实现(直接插入 \ 希尔 \ 直接选择 \ 堆 \ 冒泡 -- C语言)

相关代码gitee自取&#xff1a; C语言学习日记: 加油努力 (gitee.com) 接上期&#xff1a; 【数据结构初阶】八、非线性表里的二叉树&#xff08;二叉树的实现 -- C语言链式结构&#xff09;-CSDN博客 排序 排序的概念 所谓排序&#xff0c;就是使一串记录&#xff0c;按照…

网络编程(IP、端口、协议、UDP、TCP)【详解】

目录 1.什么是网络编程&#xff1f; 2.基本的通信架构 3.网络通信三要素 4.UDP通信-快速入门 5.UDP通信-多发多收 6.TCP通信-快速入门 7.TCP通信-多发多收 8.TCP通信-同时接收多个客户端 9.TCP通信-综合案例 1.什么是网络编程&#xff1f; 网络编程是可以让设…

Web开发学习-HTML

第一天 固定结构 如何注释&#xff1a;vs code中使用ctrl/可以达到注释这一行的效果&#xff0c;同时再次按下ctrl/&#xff0c;可以取消注释。 HTML标签的结构 例如&#xff1a;<strong>字体加粗</strong>这个就是双标签&#xff0c;<br>换行标签&#xff…

[RoarCTF 2019]Easy Calc

这题考查的是: 字符串解析特性目录读取文件内容读取 字符串解析特性详解&#xff1a;PHP字符串解析特性 &#xff08;$GET/$POST参数绕过&#xff09;&#xff08;含例题 buuctf easycalc&#xff09;_参数解析 绕过-CSDN博客 ascii码查询表&#xff1a;ASCII 表 | 菜鸟工具 …