非阻塞实现高效键盘扫描功能(STM32F4XX)

目录

概述

1 原理分析

1.1 技术背景

1.2 系统硬件

1.3 STM32 IO(输入模式)寄存器分析

1.3.1 输入IO的功能描述

1.3.2 输入配置

1.3.3 GPIO 寄存器(输入模式相关)

1.3.3.1 GPIO 端口模式寄存器

1.3.3.2 GPIO 端口上拉/下拉寄存器

1.3.3.3 GPIO 端口输入数据寄存器

1.4 外设时钟使能寄存器

2 软件实现

2.1 使用STM32CubeMX创建工程

2.2 认识Hal库中和IO相关的函数

2.3 实现代码

2.3.1 定义一个Key相关的数据结构

2.3.2 初始化函数

2.3.3 按键扫描函数

2.3.4 使用键值

3 测试

3.1 编写测试代码

3.2 测试


源代码下载地址:

使用SM32-F4实现非阻塞方式,读取按键值资源-CSDN文库

概述

        本文主要介绍如何使用非阻塞方式,实现多个按键扫描功能,能准确判断按键的状态。还详细介绍STM32 F4系列芯片IO相关的寄存器,已经Hal库中和IO相关的接口函数。重点讲解非阻塞高效键盘扫描功能的代码实现逻辑。

1 原理分析

1.1 技术背景

        在一个系统程序中,一般希望程序运行尽可能的快,这样MCU才可能经可能多的执行逻辑,或者处理数据。Windows /Linux系统中引入线程和进程来解决这个问题。在单线程系统(单片机程序:主程序main中一个while循环)中,也可以模拟多线程的方式,把阻塞执行的代码,使用时间片来轮询来执行。以提高代码运行的效率。

扫描键盘功能就明显有这类任务的特征,本文就是采用系统定时器产生时间片,实现一个非阻塞任务方式,扫描键盘中的按键,并判断键值是否有效。

1.2 系统硬件

电路分析:

系统有8个独立按键,每个独立按键一个端口与一个MCU的一个IO相连,且与MCU IO相连的这个端口,接了一个上拉电阻,其目的,保持IO输入口电平的稳定性。按键的另一个端口与GND连接,当按键按下之后,MCU IO会检测到低电平信号。

1.3 STM32 IO(输入模式)寄存器分析

要使用MCU IO控制外围设备,就需要对IO模块有一个清晰的认识,这样才能正确的使用它,下面来分析STM32 IO模块的特性。笔者使用的芯片型号是STM32F407IGT6,所以,本文STM32F4xx用户手册为例来介绍其IO的使用方法。由于,STM32 IO的功能比较复杂,这里只介绍将其配置为输入IO时,该如何使用。

1.3.1 输入IO的功能描述

根据数据手册中列出的每个 I/O 端口的特性,可通过软件将通用 I/O (GPIO) 端口的各个端口位分别配置输入模式时,有如下3种方式配置:

● 输入浮空

● 输入上拉

● 输入下拉

1.3.2 输入配置

对 I/O 端口进行编程作为输入时:

● 输出缓冲器被关闭

● 施密特触发器输入被打开

● 根据 GPIOx_PUPDR 寄存器中的值决定是否打开上拉和下拉电阻

● 输入数据寄存器每隔 1 个 AHB1 时钟周期对 I/O 引脚上的数据进行一次采样

● 对输入数据寄存器的读访问可获取 I/O 状

1.3.3 GPIO 寄存器(输入模式相关)

1.3.3.1 GPIO 端口模式寄存器

每一组GPIO有个 GPIOx_MODER 端口模式寄存器, 该寄存器一共有32个bit, 每两个bit控制一组IO下的一个pin引脚的模式状态。

MODERy[1:0]: 端口 x 配置位 (Port x configuration bits) (y = 0..15)。这些位通过软件写入,用于配置 I/O 方向模式。

00:输入(复位状态)

01:通用输出模式

10:复用功能模式

11:模拟模式

举个例子:配置GPIOI_PIN7为输入引脚,需要写MODER7[1:0] = 00

1.3.3.2 GPIO 端口上拉/下拉寄存器

每一组GPIO有个 (GPIOx_PUPDR) 上拉/下拉寄存器, 该寄存器一共有32个bit, 每2个bit控制一组IO下的一个pin引脚的上拉/下拉状态。

PUPDRy[1:0]: 端口 x 配置位 (Port x configuration bits) (y = 0..15),这些位通过软件写入,用于配置 I/O 上拉或下拉。

00:无上拉或下拉

01:上拉

10:下拉

11:保留

1.3.3.3 GPIO 端口输入数据寄存器

每一组GPIO有个 (GPIOx_IDR) 输入数据寄存器 , 该寄存器一共有32个bit, 每1个bit表示对应端口输入的值。因为stm32每一组IO有16个端口,所以,使用bit0~bit15,存储输入的bit值,bit-16~bit-31保留

IDRy[15:0]: 端口输入数据 (Port input data) (y = 0..15) 这些位为只读形式,只能在字模式下访问。它们包含相应 I/O 端口的输入值。

1.4 外设时钟使能寄存器

这个寄存器主要用来打开或者关闭所使用的外设功能,STM32F407有3个外设时钟使能寄存器 ,本文仅介绍和IO相关的 RCC_AHB1ENR ,其定义如下:

在上图中可以看见,和IO相关的时钟使能bit位分布在bit0~bit8,要使用那个端口,只需将对应的位置1,就可以使能该对应位的时钟。

2 软件实现

2.1 使用STM32CubeMX创建工程

1)打开STM32CubeMX创建工程,然后在GPIO选项卡中,配置和KEY-IO相关的参数。

2)完成参数配置后,点击GENERATE CODE,生成工程文件。

2.2 认识Hal库中和IO相关的函数

1) HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init)

功能: 用于初始化GPIO的属性,在STM32CubeMX中配置IO属性后,该函数会在IO初始代码中调用。这部分代码会由STM32CubeMX自动生成。

2) PinState HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

功能:读取IO_PIN的值

函数参数:

GPIOx: GPIO组(A,B,C...)

GPIO_Pin: GPIO组下的那个引脚(0~15)

返回值: 读到IO pin 的值

3) HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)

功能:写IO_PIN的值

函数参数:

GPIOx: GPIO组(A,B,C...)

GPIO_Pin: GPIO组下的那个引脚(0~15)

PinState: 要写的状态(0 or 1)

4) HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

功能: 触发IO_Pin电平变化

函数参数:

GPIOx: GPIO组(A,B,C...)

GPIO_Pin: GPIO组下的那个引脚(0~15)

5)HAL_GPIO_LockPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

功能: 锁存当前IO_Pin的值,reset时,该IO的电平不会发生变化

函数参数:

GPIOx: GPIO组(A,B,C...)

GPIO_Pin: GPIO组下的那个引脚(0~15)

6)HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin)

功能: 当前IO_Pin的中断函数

函数参数:

GPIO_Pin: GPIO组下的那个引脚(0~15)

7)HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)

功能: 中断函数的回调函数,HAL_GPIO_EXTI_IRQHandler中会调用该函数,且这个函数函数为weak类型,用户可重新写它。

2.3 实现代码

源代码下载地址: 使用SM32-F4实现非阻塞方式,读取按键值资源-CSDN文库

2.3.1 定义一个Key相关的数据结构

定义一个数据结构,由于操作和key相关的状态控制。

typedef struct
{uint8 (*KeyActFunc)(void);   
​uint8  Count;uint8  State;uint8  DownState;uint8  ReleaseState;
}KeyAct_Stru;

2.3.2 初始化函数

1)在该段函数中,21~29 行,实现IO状态读取函数,当按键被按下后,返回值为1, 否则返回值为0

2)44~52行, 注册按键触发函数

源代码

static KeyAct_Stru s_tBtn[KEY_TOTAL];static unsigned char IsKey_1_Down(void)      {if ((KEY_1_GPIO_Port->IDR & KEY_1_Pin) == 0)         return 1;else return 0;}
static unsigned char IsKey_2_Down(void)      {if ((KEY_2_GPIO_Port->IDR & KEY_2_Pin) == 0)         return 1;else return 0;}
static unsigned char IsKey_3_Down(void)      {if ((KEY_3_GPIO_Port->IDR & KEY_3_Pin) == 0)         return 1;else return 0;}static unsigned char IsKey_up_Down(void)     {if ((KEY_UP_GPIO_Port->IDR & KEY_UP_Pin) == 0)       return 1;else return 0;}
static unsigned char IsKey_down_Down(void)   {if ((KEY_DOWN_GPIO_Port->IDR & KEY_DOWN_Pin) == 0)   return 1;else return 0;}
static unsigned char IsKey_left_Down(void)   {if ((KEY_LEFT_GPIO_Port->IDR & KEY_LEFT_Pin) == 0)   return 1;else return 0;}
static unsigned char IsKey_right_Down(void)  {if ((KEY_RIGHT_GPIO_Port->IDR & KEY_RIGHT_Pin) == 0) return 1;else return 0;}
static unsigned char IsKey_ok_Down(void)     {if ((KEY_OK_GPIO_Port->IDR & KEY_OK_Pin) == 0)       return 1;else return 0;}void bsp_KeyInit( void )
{int i = 0;KeyAct_Stru *pBtn;for( i =0; i < KEY_TOTAL; i++ ){pBtn = &s_tBtn[i];memset( pBtn, sizeof(KeyAct_Stru), 0 );}s_tBtn[0].KeyActFunc = IsKey_1_Down;s_tBtn[1].KeyActFunc = IsKey_2_Down;s_tBtn[2].KeyActFunc = IsKey_3_Down;s_tBtn[3].KeyActFunc = IsKey_up_Down;s_tBtn[4].KeyActFunc = IsKey_down_Down;s_tBtn[5].KeyActFunc = IsKey_left_Down;s_tBtn[6].KeyActFunc = IsKey_right_Down;s_tBtn[7].KeyActFunc = IsKey_ok_Down;
}

2.3.3 按键扫描函数

实现逻辑如下: 1) 当按键被按下后,检测计数器开始工作(63~75行),bsp_KeyScan()的运行周期是1ms,当count值累加到门限值时,按键按下的状态没有改变,说明按键值有效。

2)检测按键弹起:

step-1: 检测按下标记为是否有效,如果该位有效,说明按键被按下过。

step-2:计数器开始工作,当计数器的值到达门限值后,弹起状态有效,置位弹起标记。

3)键值位(102~108行)

检测按下确认状态位和弹起确认状态位。当二者都有效时,存储的键值有效。

源代码

void bsp_KeyScan( unsigned char index )
{KeyAct_Stru *pBtn;pBtn = &s_tBtn[index];	if( pBtn->KeyActFunc() ) {// key first pressed if( pBtn->Count < KEY_FILTER_MAX_TIME ){pBtn->Count  = KEY_FILTER_MAX_TIME;}else if( pBtn->Count < KEY_FILTER_NEXT_TIME ) {pBtn->Count++;}else{// confirm:  key is presssed if( !pBtn->DownState ) {pBtn->DownState = 1;}pBtn->Count = 0;}}else{if( pBtn->DownState ){if( pBtn->Count > KEY_FILTER_MAX_TIME ) {pBtn->Count = KEY_FILTER_MAX_TIME;}else if(  pBtn->Count > 0){pBtn->Count--;}else{//confirm: key is released  if( !pBtn->ReleaseState ) {pBtn->ReleaseState = 1;}}}}// confirm key press action if( pBtn->ReleaseState && pBtn->DownState ){printf(" KEY-%d is pressed!\r\n", index);pBtn->State = 1;pBtn->ReleaseState = 0;pBtn->DownState = 0;}	
}

2.3.4 使用键值

1)bsp_KeyMonitor

按键扫描函数,该函数必须放在一个以1ms为间隙扫描的任务里,其会周期性的扫描所有注册的按键状态

2)bsp_KeyGetValue

获取键值函数,通过传入key所对应ID的值,就能得到该键值

3 测试

3.1 编写测试代码

1) 第104行, 调用系统Tick函数,实现1ms Tick功能,

2)第117行,实现键盘扫描功能,其执行周期为1ms

3) 第127行,读取键值

源代码

void bsp_KeyMonitor( void )
{unsigned char index ;for( index = 0; index < KEY_TOTAL; index ++ ){bsp_KeyScan( index );}
}unsigned char bsp_KeyGetValue(KEY_ID keyID)
{unsigned char value;value = s_tBtn[keyID].State;s_tBtn[keyID].State = 0;    // clear key statusreturn value;
}

3.2 测试

编译程序,下载到板卡中,按下不同的按键,会打印不同的键值

源代码

void tick_action( void )
{static bool flag_1s = 0;static unsigned int tick_cnt = 0;static unsigned int beforTick = 0;unsigned int currentTick;unsigned char val;currentTick = HAL_GetTick();if(beforTick != currentTick ){beforTick = currentTick;tick_cnt++;// 1s actionif( (tick_cnt % 1000) == 0) {flag_1s = true;;}//1ms actionbsp_KeyMonitor();}if( flag_1s ){flag_1s = false;HAL_GPIO_TogglePin(SYS_RUN_LED_GPIO_Port, SYS_RUN_LED_Pin);}val = bsp_KeyGetValue( KEY_1 );if( val  ){test_can1_send();}val = bsp_KeyGetValue( KEY_2 );if( val  ){test_can2_send();}
}

运行代码后,可以看见:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/269405.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

挑战给女神节送礼物,怎么寄快递才能快速的送到他手中呢?

马上就是三八女神节了&#xff0c;怎么样&#xff1f;你给心爱的她或者敬爱的她准备礼物了吗&#xff0c;如果已经准备好&#xff0c;你该怎么送给她呢&#xff1f;是当面送给她&#xff1f;还是通过快递打包送给她呢&#xff1f;这里推荐使用闪侠惠递寄快递发货给他吧&#xf…

Zookeeper3:客户端命令

文章目录 客户端命令连接服务端Zookeeper客户端内置命令 ls - 节点信息 客户端命令 连接服务端Zookeeper //客户端连接服务端zookeeper 默认连的本机2181端口的zookeeper cd /opt/module/zookeeper-3.9.1/bin && sh zkCli.sh//客户端连接远程服务端zookeeper cd /op…

MySQL高可用性攻略:快速搭建MySQL主从复制集群 !

MySQL高可用性攻略&#xff1a;快速搭建MySQL主从复制集群 &#xff01; MySQL基础知识&#xff1a;介绍MySQL数据库的基本概念和常用命令&#xff0c;如何创建数据库、表、用户和权限管理等。 MySQL安装教程&#xff1a;Centos7 安装MySQL5.7.29详细安装手册 MySQL数据类型&…

【Docker】Docker:解析容器化技术的利器与在Linux中的关键作用

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a;Linux ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 Docker 是什么&#xff1f; Docker 的作用 Docker 在 Linux 中的重要性 结语 我的其他博客 前言 随着软件开发的不断发展&…

猴子吃桃问题(python版)

文章预览&#xff1a; 题目python解法一&#xff1a;运行结果 python解法二&#xff1a;运行结果 python解法三&#xff1a;运行结果 题目 猴子吃桃问题&#xff1a;猴子第一天摘下若干个桃子&#xff0c;当即吃了一半&#xff0c;还不过瘾&#xff0c;又多吃了一个。 第二天早…

计算机网络-网络安全(二)

1.应用层安全协议&#xff1a; S-HTTP或SHTTP&#xff08;Sec HTTP&#xff09;&#xff0c;安全超文本传输协议&#xff0c;是HTTP扩展&#xff0c;使用TCP的80端口。HTTPS&#xff1a;HTTPSSL&#xff0c;使用TCP的443端口。和TLS&#xff08;传输层安全标准&#xff09;是双…

安达发|APS自动排程软件的三种模式

APS自动排程软件是一种用于生产计划和调度的工具&#xff0c;它可以帮助制造企业实现生产过程的优化和效率提升。根据不同的需求和应用场景&#xff0c;APS自动排程软件通常有三种模式&#xff1a;基于模拟仿真模式、基于TOC的模式和扩展以及基于数学建模。下面我将详细介绍这三…

解决在 Mac 上安装 Adobe 软件弹出提示:安装包已经被损坏并且不能被打开。

问题&#xff1a; “INSTALLER” is damaged and can’t be opened. You should eject the disk image. 解决方法和步骤&#xff1a; 打开安装包&#xff1b;将安装包 “INSTALLER” 拖动复制到某个文件夹&#xff0c;复制后的文件路径例如像这样&#xff1a;/Users/michael…

Qt绘制动态罗盘

介绍&#xff1a;罗盘指针以30角旋转巡逻&#xff0c;扫描航海范围内的点位&#xff0c;并绘制点云。字段信息在表格中显示&#xff0c;该数据都存储在数据库中。选择不同的范围&#xff0c;显示该范围内的点位。 #include "mainwindow.h" #include "ui_mainwi…

element-ui附件上传及在线查看详细总结,后续赋源码

一、附件上传 1、在element-ui上面复制相应代码 a、accept"image/*,.pdf,.docx,.xlsx,.doc,.xls" 是规定上传文件的类型&#xff0c;若是不限制&#xff0c;可以直接将accept‘all即可&#xff1b; b、:action"action" 这个属性就是你的上传附件的地址&am…

7款炫酷的前端动画特效分享(三)(附效果图及在线演示)

分享7款好玩的前端动画特效 其中有CSS动画、SVG动画、js小游戏等等 下方效果图可能不是特别的生动 那么你可以点击在线预览进行查看相应的动画特效 同时也是可以下载该资源的 CSS3模仿四季交替动画 基于HTML5CSS3实现的卡通风格一年四季交替动画特效 以下效果图只能体现框架的…

建立网络防御时需要重点考虑的10个因素

互联网安全中心&#xff08;CIS&#xff09;建议企业可以从以下10个因素入手&#xff1a;资产管理、数据管理、安全配置、账户和访问控制管理、漏洞管理、日志管理、恶意软件防御、数据恢复、安全培训和事件响应。 1、资产管理 建立网络防御的第一步是制定企业资产和软件资产的…

MySQL——事务

事务 2024 年 1 月字节后端实习面试&#xff1a;说说对 ACID 的理解&#xff1f; 什么是事务&#xff1f; 事务&#xff08;Transaction&#xff09;是数据库管理系统中一个执行单元&#xff08;unit of work&#xff09;&#xff0c;它由一系列的操作&#xff08;例如读取数…

Gradle学习(一)

最近在学习Gradle&#xff0c;感觉有些东西没见过&#xff0c;记录一下&#xff01; 1.Gradle与Maven的目录框架 2.Gradle的命令行安装 注&#xff1a;学习常用的是使用脚手架生成gradle项目 3.

改造muduo,不依赖boost,用C++11重构

组件的实现 1. 序 1.1. 总述 muduo库是基于多Reactor-多线程模型实现的TCP网络编程库&#xff0c;性能良好。如libev作者&#xff1a;“One loop per thread is usually a good model”&#xff0c;muduo库的作者陈硕在其《Linux多线程服务端编程》中也力荐这种“One loop pe…

如何使用生成式人工智能探索视频博客的魅力?

视频博客&#xff0c;尤其是关于旅游的视频博客&#xff0c;为观众提供了一种全新的探索世界的方式。通过图像和声音的结合&#xff0c;观众可以身临其境地体验到旅行的乐趣和发现的喜悦。而对于内容创作者来说&#xff0c;旅游视频博客不仅能分享他们的旅行故事&#xff0c;还…

【教程】APP开发后如何上架?

摘要 本文介绍了移动应用程序&#xff08;APP&#xff09;开发后如何上架的步骤和注意事项。内容包括选择合适的应用商店、遵循应用商店的规则和政策、准备上架所需材料、创建开发者账号、提交APP并等待审核等环节&#xff0c;以及上架成功后的推广和维护工作。 引言 移动应…

自动化测试基础——allure下载安装及配置及pytest + allure-pytest插件生成allure企业级测试报告及企业级定制

文章目录 前言一、allure下载二、allure安装三、allure目录介绍四、allure环境变量配置五、pytest allure-pytest插件生成allure企业级测试报告六、allure企业级报告的log定制七、allure企业级报告功能内容定制1.功能左边层级定制2.功能右边优先级定制3.功能右边测试用例描述定…

用HTML5的<canvas>元素实现刮刮乐游戏

用HTML5的&#xff1c;canvas&#xff1e;元素实现刮刮乐游戏 用HTML5的<canvas>元素实现刮刮乐&#xff0c;要求&#xff1a;将上面的“图层”的图像可用鼠标刮去&#xff0c;露出下面的“图层”的图像。 示例从简单到复杂。 简单示例 准备两张图像&#xff0c;我这…

java 版本企业招标投标管理系统源码+功能描述+tbms+及时准确+全程电子化

功能描述 1、门户管理&#xff1a;所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含&#xff1a;招标公告、非招标公告、系统通知、政策法规。 2、立项管理&#xff1a;企业用户可对需要采购的项目进行立项申请&#xff0c;并提交审批&#xff0c;查看所…