C#,数值计算,解微分方程的龙格-库塔四阶方法与源代码

Carl Runge

Martin Wilhelm Kutta

1 龙格-库塔四阶方法

数值分析中,龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。

对于一阶精度的欧拉公式有:
yi+1=yi+h*K1  K1=f(xi,yi)
当用点xi处的斜率近似值K1与右端点xi+1处的斜率K2的算术平均值作为平均斜率K*的近似值,那么就会得到二阶精度的改进欧拉公式:
yi+1=yi+h*( K1+ K2)/2
K1=f(xi,yi)
K2=f(xi+h,yi+h*K1)
依次类推,如果在区间[xi,xi+1]内多预估几个点上的斜率值K1、K2、……Km,并用他们的加权平均数作为平均斜率K*的近似值,显然能构造出具有很高精度的高阶计算公式。经数学推导、求解,可以得出四阶龙格-库塔公式,也就是在工程中应用广泛的经典龙格-库塔算法:
yi+1=yi+h*( K1+ 2*K2 +2*K3+ K4)/6
K1=f(xi,yi)
K2=f(xi+h/2,yi+h*K1/2)
K3=f(xi+h/2,yi+h*K2/2)
K4=f(xi+h,yi+h*K3)
通常所说的龙格-库塔法是指四阶而言的,我们可以仿二阶、三阶的情形推导出常用的标准四阶龙格-库塔法公式。龙格-库塔法具有精度高,收敛,稳定(在一定条件下),计算过程中可以改变步长,不需要计算高阶导数等优点,但仍需计算 在一些点上的值,如四阶龙格-库塔法每计算一步需要计算四次 的值,这给实际计算带来一定的复杂性,因此,多用来计算“表头” 。
 

2 源代码

using System;
using System.Collections;
using System.Collections.Generic;namespace Legalsoft.Truffer.Algorithm
{/// <summary>/// 给定微分方程的一阶偏导方程/// </summary>/// <param name="x"></param>/// <param name="y"></param>/// <returns></returns>public delegate double SDE_Equation(double x, double y);/// <summary>/// 解微分方程的龙格-库塔四阶方法/// </summary>public static partial class Algorithm_Gallery{public static SDE_Equation dydx = null;/// <summary>/// Finds value of y for a given x/// using step size h/// and initial value y0 at x0./// </summary>/// <param name="x0">初值</param>/// <param name="y0">初值</param>/// <param name="x">求值点</param>/// <param name="h">步长</param>/// <returns></returns>public static double Runge_Kutta_4th_Order(double x0, double y0, double x, double h){int n = (int)((x - x0) / h);double y = y0;for (int i = 1; i <= n; i++){double k1 = h * (dydx(x0, y));double k2 = h * (dydx(x0 + 0.5 * h, y + 0.5 * k1));double k3 = h * (dydx(x0 + 0.5 * h, y + 0.5 * k2));double k4 = h * (dydx(x0 + h, y + k3));y = y + (1.0 / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4);x0 = x0 + h;}return y;}}
}

3 源程序

using System;
using System.Collections;
using System.Collections.Generic;

namespace Legalsoft.Truffer.Algorithm
{
    /// <summary>
    /// 给定微分方程的一阶偏导方程
    /// </summary>
    /// <param name="x"></param>
    /// <param name="y"></param>
    /// <returns></returns>
    public delegate double SDE_Equation(double x, double y);

    /// <summary>
    /// 解微分方程的龙格-库塔四阶方法
    /// </summary>
    public static partial class Algorithm_Gallery
    {
        public static SDE_Equation dydx = null;

        /// <summary>
        /// Finds value of y for a given x
        /// using step size h
        /// and initial value y0 at x0.
        /// </summary>
        /// <param name="x0">初值</param>
        /// <param name="y0">初值</param>
        /// <param name="x">求值点</param>
        /// <param name="h">步长</param>
        /// <returns></returns>
        public static double Runge_Kutta_4th_Order(double x0, double y0, double x, double h)
        {
            int n = (int)((x - x0) / h);

            double y = y0;
            for (int i = 1; i <= n; i++)
            {
                double k1 = h * (dydx(x0, y));
                double k2 = h * (dydx(x0 + 0.5 * h, y + 0.5 * k1));
                double k3 = h * (dydx(x0 + 0.5 * h, y + 0.5 * k2));
                double k4 = h * (dydx(x0 + h, y + k3));

                y = y + (1.0 / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4);

                x0 = x0 + h;
            }

            return y;
        }
    }
}
 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/271997.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python 全栈系列232 再次搭建RabbitMQ

说明 最近想重新上RabbitMQ&#xff0c;主要目的还是为了分布式任务调度。在Kafka和RabbitMQ两者犹豫了一下&#xff0c;还是觉得RabbitMQ好一些。 在20年的时候有搞过一阵子的RabbitMQ,看了下当时的几篇文章&#xff0c;觉得其实想法一直没变过。 Python - 装机系列24 消息…

贪心算法(greedy algorithm,又称贪婪算法)详解(附例题)

目录 基本思想一&#xff09;概念二&#xff09;找出全局最优解的要求三&#xff09;求解时应考虑的问题四&#xff09;基本步骤五&#xff09;贪心策略选择六&#xff09;实际应用 1.零钱找回问题2.背包问题3.哈夫曼编码4.单源路径中的Djikstra算法5.最小生成树Prim算法 基本…

构建留学平台技术架构:从设计到实现

随着全球化进程的加速和人们对国际教育的需求不断增长&#xff0c;留学行业也迎来了快速发展的机遇。作为留学服务的重要组成部分&#xff0c;留学平台的技术架构设计至关重要。本文将探讨留学平台技术架构的设计和实现过程&#xff0c;以及相关的技术选择、挑战和解决方案。 …

如何在Windows系统部署Jellyfin Server并实现公网访问内网影音文件

文章目录 1. 前言2. Jellyfin服务网站搭建2.1. Jellyfin下载和安装2.2. Jellyfin网页测试 3.本地网页发布3.1 cpolar的安装和注册3.2 Cpolar云端设置3.3 Cpolar本地设置 4.公网访问测试5. 结语 1. 前言 随着移动智能设备的普及&#xff0c;各种各样的使用需求也被开发出来&…

746. 使用最小花费爬楼梯 (Swift版本)

题目 给你一个整数数组 cost&#xff0c;其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用&#xff0c;即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。 请你计算并返回达到楼梯顶部的最低花费。 限制条件 2…

地址分词 | EXCEL批量进行地址分词,标准化为十一级地址

一 需求 物流需要对用户输入地址进行检查&#xff0c;受用户录入习惯地址可能存在多种问题。 地址标准化是基于地址引擎和地址大数据模型&#xff0c;自动将地址信息标准化为省、市、区市县、街镇、小区、楼栋、单元、楼层、房屋、房间等元素&#xff0c;补充层级缺失数据、构建…

图像处理与视觉感知---期末复习重点(2)

文章目录 一、空间域图像增强1.1 图像增强1.2 几种变换 二、直方图2.1 直方图定义2.2 直方图均衡化2.3 离散情况2.4 例子2.5 直方图匹配2.6 例子2.7 一道例题 三、空间滤波器3.1 定义3.2 例子 四、平滑空间滤波器4.1 作用与分类4.2 线性滤波器 五、统计排序滤波器5.1 定义与分类…

挑战杯 基于深度学习的视频多目标跟踪实现

文章目录 1 前言2 先上成果3 多目标跟踪的两种方法3.1 方法13.2 方法2 4 Tracking By Detecting的跟踪过程4.1 存在的问题4.2 基于轨迹预测的跟踪方式 5 训练代码6 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于深度学习的视频多目标跟踪实现 …

SQL设计时增加说明列

后关闭sql Studio,然后打开注册表,注册表地址: 计算机\HKEY_CURRENT_USER\SOFTWARE\Microsoft\SQL Server Management Studio\18.0_IsoShell\DataProject 如有版本不同,红色内容有所变化,修改内容如下: SSVPropViewColumnsSQL70,SSVPropViewColumnsSQL80 全修改为 1,2,6,7…

Pinctrl子系统_04_Pinctrl子系统主要数据结构

引言 本节说明Pinctrl子系统中主要的数据结构&#xff0c;对这些数据结构有所了解&#xff0c;也就是对Pinctrl子系统有所了解了。 前面说过&#xff0c;要使用Pinctrl子系统&#xff0c;就需要去配置设备树。 以内核面向对象的思想&#xff0c;设备树可以分为两部分&#x…

Mint_21.3 drawing-area和goocanvas的FB笔记(五)

FreeBASIC SDL图形功能 SDL - Simple DirectMedia Layer 是完整的跨平台系统&#xff0c;有自己的窗口、直接捕获键盘、鼠标和游戏操纵杆的事件&#xff0c;直接操作音频和CDROM&#xff0c;在其surface上可使用gfx, openGL和direct3D绘图。Window3.0时代&#xff0c;各种应用…

Jenkins发送邮件、定时执行、持续部署

集成Allure报告只需要配置构建后操作即可。但如果是web自动化&#xff0c;或是用HTMLTestRunner生成报告&#xff0c;构建后操作要选择Publish HTML reports&#xff0c;而构建中还要添加Execute system Groovy script插件&#xff0c;内容&#xff1a; System.setProperty(&q…

如何快速分析OB集群日志,敏捷诊断工具obdiag分析能力实践——《OceanBase诊断系列》之四

1. 前言 obdiag是OceanBase的敏捷诊断工具。1.2版本中&#xff0c;obdiag支持快速收集诊断信息&#xff0c;但仅有收集能力是不够的&#xff0c;还需要有分析能力。因此在obdiag的1.3.0版本中&#xff0c;我们加入了OB集群的日志分析功能。用户可以一键进行集群的OB日志的分析…

运维知识点-Apache HTTP Server

Apache 介绍 介绍 Apache是一个开源的Web服务器软件&#xff0c;全称为Apache HTTP Server&#xff0c;由Apache软件基金会开发和维护。它是目前全球使用最广泛的Web服务器软件之一&#xff0c;占全球所有网络服务器的很大比例。Apache服务器具有跨平台的特性&#xff0c;可以…

软考高级:系统工程生命周期方法(计划驱动方法、渐进迭代式方法等)概念和例子

作者&#xff1a;明明如月学长&#xff0c; CSDN 博客专家&#xff0c;大厂高级 Java 工程师&#xff0c;《性能优化方法论》作者、《解锁大厂思维&#xff1a;剖析《阿里巴巴Java开发手册》》、《再学经典&#xff1a;《Effective Java》独家解析》专栏作者。 热门文章推荐&am…

【常见集合】Java 常见集合重点解析

Java 常见集合重点解析 1. 什么是算法时间复杂度&#xff1f; 时间复杂度表示了算法的 执行时间 和 数据规模 之间的增长关系&#xff1b; 什么是算法的空间复杂度&#xff1f; 表示了算法占用的额外 存储空间 与 数据规模 之间的增长关系&#xff1b; 常见的复杂度&#x…

防火墙配置实验

配置 配置IPSec FW1 FW3 NAT策略 FW1 FW3 安全策略 FW1 FW3 最后测试

数仓实战——京东数据指标体系的构建与实践

目录 一、如何理解指标体系 1.1 指标和指标体系的基本含义 1.2 指标和和标签的区别 1.3 指标体系在数据链路中的位置和作用 1.4 流量指标体系 1.5 指标体系如何向上支撑业务应用 1.6 指标体系背后的数据加工逻辑 二、如何搭建和应用指标体系 2.1 指标体系建设方法—OS…

分布式定时任务调度xxl-job

1. xxl-job基本介绍 1.1 Quartz的体系结构 Quartz中最重要的三个对象:Job&#xff08;作业&#xff09;、Trigger&#xff08;触发器&#xff09;、Scheduler&#xff08;调度器&#xff09;。 xxl-job的调度原理:调度线程在一个while循环中不断地获取一定数量的即将触发的Tr…

AIGC启示录:深度解析AIGC技术的现代性与系统性的奇幻旅程

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…