题目描述:
编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:
每行的元素从左到右升序排列。
每列的元素从上到下升序排列。
示例 1:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true
示例 2:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false
提示:
m==matrix.length
n == matrix[i].length
1 <= n, m <= 300
-109 <= matrix[i][j] <= 109
每行的所有元素从左到右升序排列
每列的所有元素从上到下升序排列
-109 <= target <= 109
思路:
通过从 “根节点” 开始搜索,遇到比 target 大的元素就向左,反之向右,即可找到目标值 target 。
“根节点” 对应的是矩阵的 “左下角” 和 “右上角” 元素,本文称之为 标志数 ,以 matrix 中的 左下角元素 为标志数 flag ,则有:
若 flag > target ,则 target 一定在 flag 所在 行的上方 ,即 flag 所在行可被消去。
若 flag < target ,则 target 一定在 flag 所在 列的右方 ,即 flag 所在列可被消去。
算法流程:
从矩阵 matrix 左下角元素(索引设为 (i, j) )开始遍历,并与目标值对比:
当 matrix[i][j] > target 时,执行 i-- ,即消去第 i 行元素。
当 matrix[i][j] < target 时,执行 j++ ,即消去第 j 列元素。
当 matrix[i][j] = target 时,返回 true ,代表找到目标值。
若行索引或列索引越界,则代表矩阵中无目标值,返回 false 。
每轮 i 或 j 移动后,相当于生成了“消去一行(列)的新矩阵”, 索引(i,j) 指向新矩阵的左下角元素(标志数),因此可重复使用以上性质消去行(列)。
python:
class Solution:def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:i,j=len(matrix)-1,0while i >=0 and j<len(matrix[0]):if matrix[i][j]>target:i-=1elif matrix[i][j]<target:j+=1else:return Truereturn False