GPT实战系列-LangChain构建自定义Agent

GPT实战系列-LangChain构建自定义Agent

LangChain

GPT实战系列-LangChain如何构建基通义千问的多工具链

GPT实战系列-构建多参数的自定义LangChain工具

GPT实战系列-通过Basetool构建自定义LangChain工具方法

GPT实战系列-一种构建LangChain自定义Tool工具的简单方法

GPT实战系列-搭建LangChain流程简单应用

GPT实战系列-简单聊聊LangChain搭建本地知识库准备

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-简单聊聊LangChain

大模型查询工具助手之股票免费查询接口

随着OpenAI的GPT-4这样的大型语言模型(LLMs)已经风靡全球,现在让它们自动执行各种任务,如回答问题、翻译语言、分析文本等。LLMs是在交互上真正体验到像“人工智能”。

如何管理这些模块呢?

LangChain在这方面发挥重要作用。LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。

在这里插入图片描述

定义Tools

同前篇所示,实现一个自定义工具 Tools,首先需要做一些配置初始化的工作,导入langchain相关的包。

from langchain.agents import tool@tool
def get_word_length(word: str) -> int:"""Returns the length of a word."""return len(word)tools = [get_word_length]

构建Prompt

实现代码,创建Prompt模版,配置大模型,以及输出解析函数。

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholderprompt = ChatPromptTemplate.from_messages([("system","You are very powerful assistant, but don't know current events",),("user", "{input}"),MessagesPlaceholder(variable_name="agent_scratchpad"),]
)

加载LLM

Langchain对OpenAI支持最好,其他的,包括国产模型支持很弱,慎用。

from langchain_openai import ChatOpenAIllm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)llm_with_tools = llm.bind_tools(tools)

创建自定义Agent

把各碎片链接起来,建立Agent,

from langchain.agents.format_scratchpad.openai_tools import (format_to_openai_tool_messages,
)
from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser
from langchain.agents import AgentExecutoragent = ({"input": lambda x: x["input"],"agent_scratchpad": lambda x: format_to_openai_tool_messages(x["intermediate_steps"]),}| prompt| llm_with_tools| OpenAIToolsAgentOutputParser()
)agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
print(list(agent_executor.stream({"input": "How many letters in the word eudca"})))

输出结果:


> Entering new AgentExecutor chain...Invoking: `get_word_length` with `{'word': 'eudca'}`5There are 5 letters in the word "eudca".> Finished chain.

LangChain是一个Python框架,可以使用LLMs构建应用程序。它与各种模块连接,使与LLM和提示管理,一切变得简单。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-实战Qwen通义千问在Cuda 12+24G部署方案_通义千问 ptuning-CSDN博客

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-让CodeGeeX2帮你写代码和注释_codegeex 中文-CSDN博客

GPT实战系列-ChatGLM3管理工具的API接口_chatglm3 api文档-CSDN博客

GPT实战系列-大话LLM大模型训练-CSDN博客

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/277136.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

torch.nn.Conv2d()与slim.conv2d()函数参数详解

目录 1. tf.nn.conv2d()函数1.1 input:1.2 filter:1.3 strides:1.4 padding: 2.tf.contrib.slim.conv2d()函数3. torch.nn.Conv2d()函数3.1 官方例子: 1. tf.nn.conv2d()函数 tensorflow构建网络模型时常用的卷积函数…

JavaParser的快速介绍

开发的工作主要是写代码, 有考虑过使用代码写代码, 使用代码分析和改进代码吗? JavaParser 就可以帮你用来处理Java 代码的这些功能。 Java Parser 的介绍 Java Parser是一个用于解析和分析Java源代码的开源工具。它提供了一个API接口&…

网络通信与网络协议

网络编程是指利用计算机网络实现程序之间通信的一种编程方式。在网络编程中,程序需要通过网络协议(如 TCP/IP)来进行通信,以实现不同计算机之间的数据传输和共享。在网络编程中,通常有三个基本要素 IP 地址:定位网络中某台计算机端口号port:定…

北斗卫星在桥隧坡安全监测领域的应用及前景展望

北斗卫星在桥隧坡安全监测领域的应用及前景展望 北斗卫星系统是中国独立研发的卫星导航定位系统,具有全球覆盖、高精度定位和海量数据传输等优势。随着卫星导航技术的快速发展,北斗卫星在桥隧坡安全监测领域正发挥着重要的作用,并为相关领域…

Elasticsearch:从 Java High Level Rest Client 切换到新的 Java API Client

作者:David Pilato 我经常在讨论中看到与 Java API 客户端使用相关的问题。 为此,我在 2019 年启动了一个 GitHub 存储库,以提供一些实际有效的代码示例并回答社区提出的问题。 从那时起,高级 Rest 客户端 (High Level Rest Clie…

ffmpeg解码和渲染理解

ffmpeg解码和渲染理解 ffmpeg视频解码步骤 FFmpeg 是一个功能强大的跨平台多媒体处理工具,包含了音视频编解码、封装/解封装、过滤器等功能。下面是一般情况下使用 FFmpeg 进行视频解码的步骤: 初始化 FFmpeg 库:首先需要初始化 FFmpeg 库&a…

提升口才表达能力的重要性与途径

提升口才表达能力的重要性与途径 口才表达能力,即一个人通过口头语言准确、流畅、生动地传达思想、情感和观点的能力,是现代社会中不可或缺的一项基本技能。无论是在职场沟通、人际交往还是公共场合发言,优秀的口才表达能力都能为我们带来诸…

BUGKU-WEB cookies

题目描述 题目截图如下: 进入场景看看: 解题思路 看源码看F12:看请求链接看提示:cookies欺骗 相关工具 插件:ModHeader或者hackbarbase64解密 解题步骤 看源码 就是rfrgrggggggoaihegfdiofi48ty598whrefeoia…

redis持久化策略

redis中持久化策略 1.持久化是什么 在前面的过程中讲述了有关于MySQL中事务的一些特性以及隔离等级。其中很重要的一条就提到了持久化,持久化就是可以将数据进行一个持久保存的意思。也就是将数据写入到硬盘中,虽然,redis是操作内存的一个数…

智能合约开发基础知识:最小信任机制、智能合约、EVM

苏泽 大家好 这里是苏泽 一个钟爱区块链技术的后端开发者 本篇专栏 ←持续记录本人自学两年走过无数弯路的智能合约学习笔记和经验总结 如果喜欢拜托三连支持~ 专栏的前面几篇详细了介绍了区块链的核心基础知识 有兴趣学习的小伙伴可以看看http://t.csdnimg.cn/fCD5E关于区块…

C++模版进阶

文章目录 C模版进阶1、非类型模版参数2、模版的特化2.1、概念2.2、函数模版特化2.3、类模版特化2.3.1、类模版全特化2.3.1、类模版偏特化 2.4、类模版特化示例 3、模版的分离编译3.1、 什么是分离编译3.2、模版的分离编译 4、模版总结 C模版进阶 1、非类型模版参数 模板参数分…

IO Watch:用 Arduino UNO 制造的可编程手表

MAKER:mblaz/译:趣无尽 Cherry(转载请注明出处) 关于手表的项目,之前我们已经介绍过一款《Arduino + 3D 打印 DIY 电子手表》。本期的项目同样的一款基于 Arduino UNO 的可编程的手表,相比之下制造门槛更高一些。同时它更成熟、实用,外形也很有设计感,非常的漂亮! 这…

TCP相关特性

协议段格式 • 源/⽬的端⼝号:表⽰数据是从哪个进程来,到哪个进程去; • 32位序号/32位确认号:后⾯详细讲; • 4位TCP报头⻓度:表⽰该TCP头部有多少个32位bit(有多少个4字节);所以TCP头部最⼤⻓度是15*460 • 6位标志位: ◦ URG:紧急指针是否有效 ◦ ACK:确认号是否有效…

如何使用ROS和easymqos快速搭建一辆语音控制导航的机器人

之前做的机器人小车基本都属于电脑或手机控制操作。目前,使用语音控制机器人小车运动,让机器人导航去指定地点,已经成为热门,并且语音识别技术已经有落地方案,可满足生活中的基本需要。有些语音芯片通过高算力处理器运…

【HBase入门与实战】一文搞懂HBase!

HBase入门与实战 目录 HBase入门与实战内容要点一、引入HBase二、了解NoSQL的概念三、NoSQL、BI、大数据的关系四、HBase概述五、HBase应用场景 内容要点 HBase的引入、定义和特点NoSQL数据库的概念和与关系型数据库的区别HBase的物理架构和逻辑架构HBase Shell的基本命令使用…

PHP异世界云商系统开源源码

系统更新与修复列表 1. 基于彩虹的二次开发 - 对彩虹系统进行了二次开发,增强了系统的功能和性能。2. 新增自定义输入框提示内容(支持批量修改) - 用户可以自定义输入框的提示内容,并支持批量修改,提升用户体验。3. 新…

劲仔食品三年倍增,抢先打响鹌鹑蛋“健康”属性品牌之争?

如果说,进入2024年后,在股价继续陷入回调状态的食品板块中有个股走势表现相对亮眼,那么劲仔食品必是其中之一。 从去年发布2023年三季度业绩公告以来,其强劲的业绩表现就带动了股价走出小趋势。2023年10月23日至今2024年3月13日收…

C#构建类库

类库程序集能将类型组合成易于部署的单元(DLL文件),为了使编写的代码能够跨多个项目重用,应该将他们放在类库程序集中。 一、创建类库 在C#中,构建类库是指创建一个包含多个类的项目,这些类可以被其他应用…

RocketMQ 面试题及答案整理,最新面试题

RocketMQ的消息存储机制是如何设计的? RocketMQ消息存储机制的设计原理: 1、CommitLog文件: 所有的消息都存储在一个连续的CommitLog文件中,保证了消息的顺序写入,提高写入性能。 2、消费队列: 为每个主…

Task-balanced distillation for object detection用于

Task-balanced distillation for object detection用于目标检测的任务平衡蒸馏 摘要 主流的目标检测器通常由分类和回归两个子任务组成,由两个并行头部实现。这种经典的设计范式不可避免的导致分类得分和定位质量(IOU)之间的空间分布不一致…