【算法】一类支持向量机OC-SVM(1)

【算法】一类支持向量机OC-SVM

  • 前言
  • 一类支持向量机OC-SVM 概念介绍
  • 示例编写
    • 数据集创建
    • 实现一类支持向量机OC-SVM
    • 完整的示例输出


前言

由于之前毕设期间主要的工具就是支持向量机,从基础的回归和分类到后来的优化,在接触到支持向量机还有一类支持向量机的,对其产生了一定的兴趣,并对研究过程中的相关示例进行记录,主要是基础的一类支持向量机OC-SVM示例蜂群算法优化一类支持向量机超参数示例,方便后续的查看。

一类支持向量机OC-SVM 概念介绍

OC-SVM(One-Class Support Vector Machine)是一种支持向量机(Support Vector Machine,SVM)的变体,用于异常检测和异常检测问题。与传统的SVM只能处理二分类问题不同,OC-SVM旨在通过仅使用正例样本来学习一个描述正例样本特征的超平面,并尽可能将负例样本远离该超平面。

在OC-SVM中,训练样本仅包含正例样本,目标是找到一个最优的超平面,使得正例样本尽可能地位于该超平面上方,并使负例样本尽可能地位于该超平面下方。这样,当新的样本点被映射到特征空间时,可以根据其相对于超平面的位置进行分类,从而判断其是否为异常样本。

该介绍不那么通俗易懂,看了一篇文章,简单的说,以前的svm 分类有明细的划分,现在的oc-svm则只有一个类别的划分,也就是正例,至于其他的都归属于负例。这个在大神的知乎文章什么是一类支持向量机(one class SVM),是指分两类的支持向量机吗?中有通俗的例子讲解,这边不进行重复论述。

示例编写

主要是基于vscode 编译器展开python的编写,只需要在扩展中下载Python 插件即可。
在这里插入图片描述

数据集创建

数据集包括测试与训练集,由于一类支持向量机OC-SVM在示例中只要采用python 中的OneClassSVM,而它返回的预测标签如果 正常数据点返回 1,异常点返回 -1 ,因此在数据集的标签要做相应的处理,正例为1,负例为-1。

# 假设 X 是训练数据,它应该是一个形状为 (n_samples, n_features) 的二维数组
# 这里我们创建一个简单的示例数据集
X = np.random.normal(size=(100, 2))
binary_array = np.random.randint(2, size=100)
binary_array=np.where(binary_array == 0, -1, 1)
# 预测
# 使用训练好的模型预测新数据点的标签,正常数据点返回 1,异常点返回 -1
X_test = np.random.normal(size=(10, 2))

实现一类支持向量机OC-SVM

主要采用OneClassSVM,也是sklearn库里面的,pip 一下就行。使用起来跟svm 基本一样。

# 创建一个 OneClassSVM 对象
# 通过 'nu' 参数来控制错误率的上界和支持向量的比例
# 'kernel' 参数可以选择核函数,例如 'rbf' 代表径向基函数核
# 'gamma' 是 'rbf', 'poly' 和 'sigmoid' 核函数的系数
ocsvm = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)
  • ‘nu’ 参数来控制错误率的上界和支持向量的比例
  • ‘kernel’ 参数可以选择核函数,例如 ‘rbf’ 代表径向基函数核
  • ‘gamma’ 是 ‘rbf’, ‘poly’ 和 ‘sigmoid’ 核函数的系数
  • ‘shrinking’ 参数如果设为 True,则会使用启发式收缩
  • ‘tol’ 是停止训练的误差值大小
  • ‘cache_size’ 是指定训练时使用的缓存大小
  • ‘verbose’ 是控制日志输出的数量

这个可以直接看源码的注释,里面都有介绍。

完整的示例输出

# demo
from sklearn import svm
import numpy as np# 假设 X 是训练数据,它应该是一个形状为 (n_samples, n_features) 的二维数组
# 这里我们创建一个简单的示例数据集
X = np.random.normal(size=(100, 2))
binary_array = np.random.randint(2, size=100)
binary_array=np.where(binary_array == 0, -1, 1)
print(binary_array)# 创建一个 OneClassSVM 对象
# 通过 'nu' 参数来控制错误率的上界和支持向量的比例
# 'kernel' 参数可以选择核函数,例如 'rbf' 代表径向基函数核
# 'gamma' 是 'rbf', 'poly' 和 'sigmoid' 核函数的系数
ocsvm = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)# 训练模型
ocsvm.fit(X,binary_array)# 预测
# 使用训练好的模型预测新数据点的标签,正常数据点返回 1,异常点返回 -1
X_test = np.random.normal(size=(10, 2))
# print(X_test)
print("--------------")
predictions = ocsvm.predict(X_test)# 输出预测结果
print(predictions)
print("--------------")
# 也可以使用 decision_function 方法来获取每个样本到决策边界的距离
# 负数通常表示异常值
distances = ocsvm.decision_function(X_test)
print(distances)

在这里插入图片描述
从输出的结果来看,有2组示例预测为负例,然后可以通过与真实标签比较,调整超参数来提交预测的精度。也可以嵌入寻优方法,这个在往期博文都有介绍,比如ga、pso等等。

在资源中上传了用蜂群算法优化一类支持向量机超参数的2个示例,有需要可以直接下载使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/277639.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis Desktop Manager:一站式Redis数据库管理与优化

Redis Desktop Manager是一款功能强大的Redis桌面管理工具,也被称作Redis可视化工具。以下是其主要的功能特色: 连接管理:Redis Desktop Manager支持连接多个Redis服务器,用户可以在同一界面下管理多个数据库,大大提高…

通用的springboot web jar包执行脚本,释放端口并执行jar包

1、通用的springboot web jar包执行脚本,释放端口并执行jar包: #!/bin/bash set -eDATE$(date %Y%m%d%H%M) # 基础路径 BASE_PATH/data/yitu-projects/yitu-xzhq/sftp # 服务名称。同时约定部署服务的 jar 包名字也为它。 SERVER_NAMEyitu-server # 环境…

数据仓库数据分层详解

数据仓库中的数据分层是一种重要的数据组织方式,其目的是为了在管理数据时能够对数据有一个更加清晰的掌控。以下是数据仓库中的数据分层详解: 原始数据层(Raw Data Layer):这是数仓中最底层的层级,用于存…

计算机二级Python题目13

目录 1. 基本题 1.1 基本题1 1.2 基本题2 1.3 基本题3 2. turtle画图 3. 大题 3.1 大题1 3.2 大题2 1. 基本题 1.1 基本题1 lseval(input()) s"" for item in ls:if type(item)type("香山"):s item print(s) 1.2 基本题2 import random random.se…

android MMKV数据持久化缓存集合

前言 最近在使用mmkv缓存的时候 发现没有集合缓存 非常不方便 自己写一个方法 MMKV public class MmkvUtils {private MmkvUtils() {throw new UnsupportedOperationException("u cant instantiate me...");}public static void init() {MMKV.initialize(LeoUtils…

RTP 控制协议 (RTCP) 反馈用于拥塞控制

摘要 有效的 RTP 拥塞控制算法,需要比标准 RTP 控制协议(RTCP)发送方报告(SR)和接收方报告(RR)数据包提供的关于数据包丢失、定时和显式拥塞通知 (ECN) 标记的更细粒度的反馈。 本文档描述了 RTCP 反馈消息,旨在使用 RTP 对交互式实时流量启用拥塞控制…

【安全类书籍-3】XSS跨站脚剖析与防御

目录 内容简介 作用 下载地址 内容简介 这本书涵盖以下几点: XSS攻击原理:解释XSS是如何利用Web应用未能有效过滤用户输入的缺陷,将恶意脚本注入到网页中,当其他用户访问时被执行,实现攻击者的目的,例如窃取用户会话凭证、实施钓鱼攻击等。 XSS分类:分为存储型XSS(…

【热门话题】前端框架发展史

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 前端开发的历史演变引言第一章:起源与基础建设 - HTML与CSS时代1.1 …

蓝桥杯刷题(九)

1.三国游戏 代码 #输入数据 nint(input()) Xlilist(map(int,input().split())) Ylilist(map(int,input().split())) Zlilist(map(int,input().split())) #分别计算X-Y-Z/Y-Z-X/Z-X-Y并排序 newXli sorted([Xli[i] - Yli[i] - Zli[i] for i in range(n)],reverseTrue) newYli …

C#控制台贪吃蛇

Console.Write("");// 第一次生成食物位置 // 随机生成一个食物的位置 // 食物生成完成后判断食物生成的位置与现在的蛇的身体或者障碍物有冲突 // 食物的位置与蛇的身体或者障碍物冲突了,那么一直重新生成食物,直到生成不冲突…

Android 系统的启动过程

Android 系统的启动流程: RomBoot(只读存储器引导程序):这是设备上电时运行的初始软件。RomBoot执行基本的硬件初始化,确保硬件处于可以运行后续启动阶段的状态。这一阶段非常重要,因为它为整个启动过程奠定…

【JAVA】JAVA方法的学习和创造

🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法|MySQL| ​💫个人格言:“没有罗马,那就自己创造罗马~” 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不…

软考高级:软件工程单元测试(驱动模块、被测模块、桩模块)概念和例题

作者:明明如月学长, CSDN 博客专家,大厂高级 Java 工程师,《性能优化方法论》作者、《解锁大厂思维:剖析《阿里巴巴Java开发手册》》、《再学经典:《Effective Java》独家解析》专栏作者。 热门文章推荐&am…

手撕算法-最长公共子序列(二)

最长公共子序列(二) 分析:典型的动态规划,直接看代码了。 代码: import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** longest common sub…

【Python】新手入门学习:详细介绍接口分隔原则(ISP)及其作用、代码示例

【Python】新手入门学习:详细介绍接口分隔原则(ISP)及其作用、代码示例 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、Py…

【SpringCloud微服务实战07】Sentinel 服务保护

Sentinel 是阿里巴巴开源的一款微服务流量控制组件。主要作用: 流量控制:避免因瞬间高并发流量而导致服务故障流。超时处理、线程隔离、降级熔断:避免因服务故障引起的雪崩问题。一、Sentinel 安装 1、安装Sentinel控制台,下载jar包并启动:Releases alibaba/Sentinel G…

Day38:安全开发-JavaEE应用SpringBoot框架MyBatis注入Thymeleaf模版注入

目录 SpringBoot-Web应用-路由响应 SpringBoot-数据库应用-Mybatis SpringBoot-模版引擎-Thymeleaf 思维导图 Java知识点 功能:数据库操作,文件操作,序列化数据,身份验证,框架开发,第三方库使用等. 框架…

SpringMVC基础之工作流程

文章目录 SpringMVC 的工作流程1. 总图2. DispatcherServlet3. 必需的配置4. 加载配置文件的两个时机5. 定义控制器6. 创建 JSP 视图 SpringMVC 的工作流程 1. 总图 如上图,Spring MVC 程序的完整执行流程如下: 用户通过浏览器发送请求,请求…

upload-labs通关方式

pass-1 通过弹窗可推断此关卡的语言大概率为js,因此得出两种解决办法 方法一 浏览器禁用js 关闭后就逃出了js的验证就可以正常php文件 上传成功后打开图片链接根据你写的一句话木马执行它,我这里采用phpinfo() 方法二 在控制台…

VLC抓取m3u8视频

前言 最近想看一些网络视频,但是很多时候网页上是m3u8推流的,如果在线看,速度又慢,所以就想下载下来,就想到了VLC的推流,转换能力,查阅资料,加上实践,总结心得。 设置中…