免费阅读篇 | 芒果YOLOv8改进110:注意力机制GAM:用于保留信息以增强渠道空间互动

💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可

该专栏完整目录链接: 芒果YOLOv8深度改进教程

该篇博客为免费阅读内容,直接改进即可🚀🚀🚀

文章目录

      • 1. GAM论文
      • 2. YOLOv8 核心代码改进部分
      • 2.1 核心新增代码
        • 2.2 修改部分
      • 2.3 YOLOv8-gam 网络配置文件
      • 2.4 运行代码
      • 改进说明


1. GAM论文

在这里插入图片描述

研究了多种注意力机制来提高各种计算机视觉任务的性能。然而,现有的方法忽略了保留通道和空间方面的信息以增强跨维度交互的重要性。因此,我们提出了一种全局注意力机制,通过减少信息缩减和放大全局交互式表示来提高深度神经网络的性能。我们引入了带有多层感知器的 3D 排列,用于通道注意力以及卷积空间注意力子模块。对CIFAR-100和ImageNet-1K上图像分类任务的所提机制的评估表明,我们的方法在ResNet和轻量级MobileNet上都稳定地优于最近的几种注意力机制。

在这里插入图片描述

具体细节可以去看原论文:https://arxiv.org/pdf/2112.05561v1.pdf


2. YOLOv8 核心代码改进部分

2.1 核心新增代码

首先在ultralytics/nn/modules文件夹下,创建一个 gam.py文件,新增以下代码

import numpy as np
import torch
from torch import nn
from torch.nn import initclass GAMAttention(nn.Module):#https://paperswithcode.com/paper/global-attention-mechanism-retain-informationdef __init__(self, c1, c2, group=True,rate=4):super(GAMAttention, self).__init__()self.channel_attention = nn.Sequential(nn.Linear(c1, int(c1 / rate)),nn.ReLU(inplace=True),nn.Linear(int(c1 / rate), c1))self.spatial_attention = nn.Sequential(nn.Conv2d(c1, c1//rate, kernel_size=7, padding=3,groups=rate)if group else nn.Conv2d(c1, int(c1 / rate), kernel_size=7, padding=3), nn.BatchNorm2d(int(c1 /rate)),nn.ReLU(inplace=True),nn.Conv2d(c1//rate, c2, kernel_size=7, padding=3,groups=rate) if group else nn.Conv2d(int(c1 / rate), c2, kernel_size=7, padding=3), nn.BatchNorm2d(c2))def forward(self, x):b, c, h, w = x.shapex_permute = x.permute(0, 2, 3, 1).view(b, -1, c)x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)x_channel_att = x_att_permute.permute(0, 3, 1, 2)x = x * x_channel_attx_spatial_att = self.spatial_attention(x).sigmoid()x_spatial_att=channel_shuffle(x_spatial_att,4) #last shuffle out = x * x_spatial_attreturn out  def channel_shuffle(x, groups=2):B, C, H, W = x.size()out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous()out=out.view(B, C, H, W) return out   
2.2 修改部分

在ultralytics/nn/modules/init.py中导入 定义在 gam.py 里面的模块

from .gam import GAMAttention'GAMAttention' 加到 __all__ = [...] 里面

第一步:
ultralytics/nn/tasks.py文件中,新增

from ultralytics.nn.modules import GAMAttention

然后在 在tasks.py中配置
找到

        elif m is nn.BatchNorm2d:args = [ch[f]]

在这句上面加一个

        elif m is GAMAttention:c1, c2 = ch[f], args[0]if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)args = [c1, c2, *args[1:]]

2.3 YOLOv8-gam 网络配置文件

新增YOLOv8-gam.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 3, GAMAttention, [1024]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

2.4 运行代码

直接替换YOLOv8-gam.yaml 进行训练即可

到这里就完成了这篇的改进。

改进说明

这里改进是放在了主干后面,如果想放在改进其他地方,也是可以的。直接新增,然后调整通道,配齐即可,如果有不懂的,可以添加博主联系方式,如下


🥇🥇🥇
添加博主联系方式:

友好的读者可以添加博主QQ: 2434798737, 有空可以回答一些答疑和问题

🚀🚀🚀


参考

https://github.com/ultralytics/ultralytics

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/278652.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最细致最简单的 Arm 架构搭建 Harbor

更好的阅读体验:点这里 ( www.doubibiji.com ) ARM离线版本安装 官方提供了一个 arm 版本,但是好久都没更新了,地址:https://github.com/goharbor/harbor-arm 。 也不知道为什么不更新,我看…

Linux docker3--数据卷-nginx配置示例

一、因为docker部署服务都是以最小的代价部署,所以通常在容器内部很多依赖和命令无法执行。进入容器修改配置的操作也比较麻烦。本例介绍的数据卷作用就是将容器内的配置和宿主机文件打通,之后修改宿主机的配置文件就相当于修改了docker进程的配置文件&a…

【IC设计】Verilog线性序列机点灯案例(四)(小梅哥课程)

文章目录 该系列目录:设计环境设计目标设计思路RTL及Testbench代码RTL代码Testbenchxdc约束 仿真结果 声明:案例和代码来自小梅哥课程,本人仅对知识点做做笔记,如有学习需要请支持官方正版。 该系列目录: Verilog线性…

uniapp微信小程序随机生成canvas-id报错?

uniapp微信小程序随机生成canvas-id报错? 文章目录 uniapp微信小程序随机生成canvas-id报错?效果图遇到问题解决 场景: 子组件,在 mounted 绘制 canvas;App、H5端正常显示,微信小程序报错; 效…

spring-boot-starter-thymeleaf加载外部html文件

在Spring MVC中,我们可以使用Thymeleaf模板引擎来实现加载外部HTML文件。 1.Thymeleaf介绍 Thymeleaf是一种现代化的服务器端Java模板引擎,用于构建漂亮、可维护且易于测试的动态Web应用程序。它适用于与Spring框架集成,并且可以与Spring M…

VSCode下使用github初步

由于各种需要,现在需要统一将一些代码提交搞github,于是有了在VSCode下使用github的需求。之前只是简单的使用git clone,代码提交这些用的是其他源代码工具,于是得学习实操下,并做一记录以备后用。 安装 VSCode安装 …

swagger使用手册

1.导入依赖 <!--引入swagger--><dependency><groupId>io.springfox</groupId><artifactId>springfox-swagger2</artifactId><version>2.7.0</version></dependency><dependency><groupId>io.springfox</…

深度学习面经-part3(RNN、LSTM)

3.RNN 核心思想&#xff1a;像人一样拥有记忆能力。用以往的记忆和当前的输入&#xff0c;生成输出。 RNN 和 传统神经网络 最大的区别:在于每次都会将前一次的输出结果&#xff0c;带到下一次的隐藏层中&#xff0c;一起训练。 RNN应用场景: 1.文本生成 2.语音识别 3.机器翻…

25考研|北大软微会「爆炸」吗?

软微不是已经爆炸了吗&#xff1f; 大家去看看他的录取平均分就知道了&#xff0c;没有实力千万别碰&#xff0c;现在考软微已经不存在捡漏之说。 110408的复试线已经划到了465分&#xff0c;这个人真的不低了&#xff0c;因为有数学一和408两个比较难的专业课&#xff0c;复…

判断闰年(C语言)

一、运行结果&#xff1b; 二、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h>int main() {//初始化变量值&#xff1b;int year 2000;//执行循环判断&#xff1b;while (year < 2010){//执行流程&#xff1b;//判断能否整除4&#xff1…

云原生(三)、Docker网络

Docker网络 在 Docker 中&#xff0c;不同容器之间的网络访问原理取决于容器所使用的网络模式。下面是 Docker 中常见的两种网络模式下容器间网络访问的原理&#xff1a; 桥接模式&#xff08;Bridge&#xff09;&#xff1a; 在桥接模式下&#xff0c;Docker 使用 Linux 桥接…

CSS案例-3.背景练习

效果1 用背景加入图标 效果2 将图片设为页面背景,图片主体在中间 效果3 鼠标放到导航栏上会变颜色 知识点 CSS背景 属性 描述 取值 background 复合属性 看独立属性 background-color 背景颜色 <color> background-image 背景图像 none | url background-repeat 背景…

计算机网络——物理层(信道复用技术)

计算机网络——物理层&#xff08;信道复用技术&#xff09; 信道复用技术频分多址与时分多址 频分复用 FDM (Frequency Division Multiplexing)时分复用 TDM (Time Division Multiplexing)统计时分复用 STDM (Statistic TDM)波分复用码分复用 我们今天接着来看信道复用技术&am…

Android下的匀速贝塞尔

画世界pro里的画笔功能很炫酷 其画笔配置可以调节流量&#xff0c;密度&#xff0c;色相&#xff0c;饱和度&#xff0c;亮度等。 他的大部分画笔应该是通过一个笔头图片在触摸轨迹上匀速绘制的原理。 这里提供一个匀速贝塞尔的kotlin实现&#xff1a; class EvenBezier {p…

前端安全——最新:lodash原型漏洞从发现到修复全过程

人生的精彩就在于你永远不知道惊喜和意外谁先来&#xff0c;又是一个平平无奇的早晨&#xff0c;我收到了一份意外的惊喜——前端某项目出现lodash依赖原型污染漏洞。咋一听&#xff0c;很新奇。再仔细一看&#xff0c;呕吼&#xff0c;更加好奇了~然后就是了解和修补漏洞之旅。…

PHP反序列化--引用

一、引用的理解&#xff1a; 引用就是给予一个变量一个恒定的别名。 int a 10; int b &a; a 20; cout<<a<<b<<endl; 输出结果 : a20、b20 二、靶场复现&#xff1a; <?php highlight_file(__FILE__); error_reporting(0); include("flag.p…

留学文书可以彻底被AI取代吗?升学指导这一职业是否会被AI逼到墙角?

近日&#xff0c;ChatGPT再次“进化”&#xff0c;其最新版本ChatGPT-4又掀高潮。其生产者OpenAI 称&#xff0c;“ChatGPT-4是最先进的系统&#xff0c;能生产更安全和更有用的回复。”和上一代相比&#xff0c;GPT-4拥有了更广的知识面和更强的解决问题能力&#xff0c;在创意…

VSCode + PicGo + Github 实现markdown图床管理

目录 PicGo客户端VSvode插件 PicGo客户端 PicGo 是一个图片上传管理工具 官网&#xff1a;https://molunerfinn.com/PicGo/ github图传使用说明&#xff1a;https://picgo.github.io/PicGo-Doc/zh/guide/config.html#GitHub图床 步骤&#xff1a; 1、创建一个github公开仓库…

Java解决完全二叉树的节点个数

Java解决完全二叉树的节点个数 01 题目 给你一棵 完全二叉树 的根节点 root &#xff0c;求出该树的节点个数。 完全二叉树 的定义如下&#xff1a;在完全二叉树中&#xff0c;除了最底层节点可能没填满外&#xff0c;其余每层节点数都达到最大值&#xff0c;并且最下面一层的…

Jenkins实现CICD(3)_Jenkins连接到git

文章目录 1、如何完成上述操作&#xff0c;并且不报如下错&#xff1a;2、连接不上git&#xff0c;操作如下&#xff1a;3、将上边产生的3个文件拷贝到&#xff1a;C:\Windows\System32\config\systemprofile\.ssh4、新建下图凭证&#xff1a;创建步骤&#xff1a; 5、公钥填到…