自然语言处理: 第十七章RAG的评估技术RAGAS

论文地址:[2309.15217] RAGAS: Automated Evaluation of Retrieval Augmented Generation (arxiv.org)

项目地址: explodinggradients/ragas: Evaluation framework for your Retrieval Augmented Generation (RAG) pipelines (github.com)

上一篇文章主要介绍了RAG的优化技术,感兴趣的可以回顾下,本篇文章主要是介绍RAG技术的主流评估方法。



应用原理

在这里插入图片描述

RAG 系统性能评估的多个框架,都包含了几项独立的指标,例如总体答案相关性、答案基础性、忠实度和检索到的上下文相关性。例如本章主要介绍的的RAGAS 使用真实性和答案相关性来评价生成答案的质量,并使用经典的上下文精准度和召回率来评估 RAG 方案的检索性能,上述指标共同构成了RAGAs评分,用于全面评估RAG pipeline性能。出了上述四个指标,最核心的RAG的两个指标还是关于生成的答案的,所以RAG同样也提供了最下面两个评估指指标

  • Faithfulness(忠诚度) - generation: 衡量生成答案与给定上下文中的事实的一致性,越接近1越好。如果答案(answer)中提出的所有基本事实(claims)都可以从给定的上下文(context)中推断出来,则生成的答案被认为是忠实的 。为了计算这一点,首先从生成的答案中识别一组claims。然后,将这些claims中的每一项与给定的context进行交叉检查,以确定是否可以从给定的context中推断出它。忠实度分数由以下公式得出:

    在这里插入图片描述

  • Answer Relevancy(回答相关性)- generation:衡量生成的提示答案与问题的相关性,越接近1越好。

    当答案直接且适当地解决原始问题时,该答案被视为相关。重要的是,我们对答案相关性的评估不考虑真实情况,而是对答案缺乏完整性或包含冗余细节的情况进行惩罚。为了计算这个分数,LLM会被提示多次为生成的答案生成适当的问题,并测量这些生成的问题与原始问题之间的平均余弦相似度。基本思想是,如果生成的答案准确地解决了最初的问题,LLM应该能够从答案中生成与原始问题相符的问题。

  • Context Precision(内容准确性) - retrieval: 衡量检索的上下文内容与标准答案的相关性,理想情况下,所有相关文档块(chunks)必须出现在顶层。该指标使用question和计算contexts。

    在这里插入图片描述

  • Context recall(召回内容)- retrieval : 使用带注释的答案作为基本真理来衡量检索到的上下文的内容,衡量检索到的上下文(Context)与人类提供的真实答案(ground truth)的一致程度,它是根据ground truth和检索到的Context计算出来的。为了根据真实答案(ground truth)估算上下文召回率(Context recall),分析真实答案中的每个句子以确定它是否可以归因于检索到的Context。 在理想情况下,真实答案中的所有句子都应归因于检索到的Context。

    在这里插入图片描述

  • Answer semantic similarity(回答语义相似度): 评估生成的答案和标准答案的语义相似度,越接近1越好。

  • Answer correctness(回答准确性),评估生成答案和标准答案的准确性,越接近1越好。

(上述6个index 值都是【0,1】之间)



RAGAs的评估流程在文中有比较详细的描述,在此只摘抄关键字。

  • 开始 :启动准备和设置RAG应用的过程。
  • 数据准备 :加载和分块处理文档。
  • 设置向量数据库 :生成向量嵌入并存储在向量数据库中。
  • 设置检索器组件 :基于向量数据库设置检索器。
  • 组合RAG管道 :结合检索器、提示模板和LLM组成RAG管道。
  • 准备评估数据 :准备问题和对应的真实答案。
  • 构建数据集 :通过推理准备数据并构建用于评估的数据集。
  • 评估RAG应用 :导入评估指标并对RAG应用进行评估。
  • 结束 :完成评估过程。

整个流程如下图所示

在这里插入图片描述



除了RAGAS ,还有一个简单有效的检索器评估管道的例子可以在这里找到,它已被应用于编码器的微调部分。一个更高级的方法不仅考虑 命中率 ,还包括了常用的搜索引擎评估指标 平均倒数排名 (Mean Reciprocal Rank) ,以及生成答案的质量指标,如真实性和相关性,这在 OpenAI 的实用指南中有所展示。LangChain 提供了一个颇为先进的评估框架 LangSmith。在这个框架中,你不仅可以实现自定义的评估器,还能监控 RAG 管道内的运行,进而增强系统的透明度。

如果你正在使用 LlamaIndex 进行构建,可以尝试 rag_evaluator llama pack

快速入门

安装

!pip install ragas

或者源码安装

!git clone https://github.com/explodinggradients/ragas && cd ragas
!pip install -e .


快速评估


from datasets import Dataset 
import os
from ragas import evaluate
from ragas.metrics import faithfulness, answer_correctnessos.environ["OPENAI_API_KEY"] = "your-openai-key"data_samples = {'question': ['When was the first super bowl?', 'Who won the most super bowls?'],'answer': ['The first superbowl was held on Jan 15, 1967', 'The most super bowls have been won by The New England Patriots'],'contexts' : [['The First AFL–NFL World Championship Game was an American football game played on January 15, 1967, at the Los Angeles Memorial Coliseum in Los Angeles,'], ['The Green Bay Packers...Green Bay, Wisconsin.','The Packers compete...Football Conference']],'ground_truth': ['The first superbowl was held on January 15, 1967', 'The New England Patriots have won the Super Bowl a record six times']
}dataset = Dataset.from_dict(data_samples)score = evaluate(dataset,metrics=[faithfulness,answer_correctness])
score.to_pandas()

参考资料:

学习检索增强生成(RAG)技术,看这篇就够了——热门RAG文章摘译(9篇) - 知乎 (zhihu.com)

高级RAG(四):Ragas评估 - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/278654.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring boot2.7整合jetcache方法缓存

前面的文章 我们讲了 spring boot 整合 jetcache 做基本字符串数据缓存 但是 我这里有个这样的逻辑 我的 domain 包下 有一个 book 属性类 里面就 id 和 name 属性 设置了 对应的 set get函数 和一个整体的构造函数 package com.example.javadom.domain;public class book {pr…

免费阅读篇 | 芒果YOLOv8改进110:注意力机制GAM:用于保留信息以增强渠道空间互动

💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可 该专栏完整目录链接: 芒果YOLOv8深度改进教程 该篇博客为免费阅读内容,直接改进即可🚀🚀&#x1f…

最细致最简单的 Arm 架构搭建 Harbor

更好的阅读体验:点这里 ( www.doubibiji.com ) ARM离线版本安装 官方提供了一个 arm 版本,但是好久都没更新了,地址:https://github.com/goharbor/harbor-arm 。 也不知道为什么不更新,我看…

Linux docker3--数据卷-nginx配置示例

一、因为docker部署服务都是以最小的代价部署,所以通常在容器内部很多依赖和命令无法执行。进入容器修改配置的操作也比较麻烦。本例介绍的数据卷作用就是将容器内的配置和宿主机文件打通,之后修改宿主机的配置文件就相当于修改了docker进程的配置文件&a…

【IC设计】Verilog线性序列机点灯案例(四)(小梅哥课程)

文章目录 该系列目录:设计环境设计目标设计思路RTL及Testbench代码RTL代码Testbenchxdc约束 仿真结果 声明:案例和代码来自小梅哥课程,本人仅对知识点做做笔记,如有学习需要请支持官方正版。 该系列目录: Verilog线性…

uniapp微信小程序随机生成canvas-id报错?

uniapp微信小程序随机生成canvas-id报错? 文章目录 uniapp微信小程序随机生成canvas-id报错?效果图遇到问题解决 场景: 子组件,在 mounted 绘制 canvas;App、H5端正常显示,微信小程序报错; 效…

spring-boot-starter-thymeleaf加载外部html文件

在Spring MVC中,我们可以使用Thymeleaf模板引擎来实现加载外部HTML文件。 1.Thymeleaf介绍 Thymeleaf是一种现代化的服务器端Java模板引擎,用于构建漂亮、可维护且易于测试的动态Web应用程序。它适用于与Spring框架集成,并且可以与Spring M…

VSCode下使用github初步

由于各种需要,现在需要统一将一些代码提交搞github,于是有了在VSCode下使用github的需求。之前只是简单的使用git clone,代码提交这些用的是其他源代码工具,于是得学习实操下,并做一记录以备后用。 安装 VSCode安装 …

swagger使用手册

1.导入依赖 <!--引入swagger--><dependency><groupId>io.springfox</groupId><artifactId>springfox-swagger2</artifactId><version>2.7.0</version></dependency><dependency><groupId>io.springfox</…

深度学习面经-part3(RNN、LSTM)

3.RNN 核心思想&#xff1a;像人一样拥有记忆能力。用以往的记忆和当前的输入&#xff0c;生成输出。 RNN 和 传统神经网络 最大的区别:在于每次都会将前一次的输出结果&#xff0c;带到下一次的隐藏层中&#xff0c;一起训练。 RNN应用场景: 1.文本生成 2.语音识别 3.机器翻…

25考研|北大软微会「爆炸」吗?

软微不是已经爆炸了吗&#xff1f; 大家去看看他的录取平均分就知道了&#xff0c;没有实力千万别碰&#xff0c;现在考软微已经不存在捡漏之说。 110408的复试线已经划到了465分&#xff0c;这个人真的不低了&#xff0c;因为有数学一和408两个比较难的专业课&#xff0c;复…

判断闰年(C语言)

一、运行结果&#xff1b; 二、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h>int main() {//初始化变量值&#xff1b;int year 2000;//执行循环判断&#xff1b;while (year < 2010){//执行流程&#xff1b;//判断能否整除4&#xff1…

云原生(三)、Docker网络

Docker网络 在 Docker 中&#xff0c;不同容器之间的网络访问原理取决于容器所使用的网络模式。下面是 Docker 中常见的两种网络模式下容器间网络访问的原理&#xff1a; 桥接模式&#xff08;Bridge&#xff09;&#xff1a; 在桥接模式下&#xff0c;Docker 使用 Linux 桥接…

CSS案例-3.背景练习

效果1 用背景加入图标 效果2 将图片设为页面背景,图片主体在中间 效果3 鼠标放到导航栏上会变颜色 知识点 CSS背景 属性 描述 取值 background 复合属性 看独立属性 background-color 背景颜色 <color> background-image 背景图像 none | url background-repeat 背景…

计算机网络——物理层(信道复用技术)

计算机网络——物理层&#xff08;信道复用技术&#xff09; 信道复用技术频分多址与时分多址 频分复用 FDM (Frequency Division Multiplexing)时分复用 TDM (Time Division Multiplexing)统计时分复用 STDM (Statistic TDM)波分复用码分复用 我们今天接着来看信道复用技术&am…

Android下的匀速贝塞尔

画世界pro里的画笔功能很炫酷 其画笔配置可以调节流量&#xff0c;密度&#xff0c;色相&#xff0c;饱和度&#xff0c;亮度等。 他的大部分画笔应该是通过一个笔头图片在触摸轨迹上匀速绘制的原理。 这里提供一个匀速贝塞尔的kotlin实现&#xff1a; class EvenBezier {p…

前端安全——最新:lodash原型漏洞从发现到修复全过程

人生的精彩就在于你永远不知道惊喜和意外谁先来&#xff0c;又是一个平平无奇的早晨&#xff0c;我收到了一份意外的惊喜——前端某项目出现lodash依赖原型污染漏洞。咋一听&#xff0c;很新奇。再仔细一看&#xff0c;呕吼&#xff0c;更加好奇了~然后就是了解和修补漏洞之旅。…

PHP反序列化--引用

一、引用的理解&#xff1a; 引用就是给予一个变量一个恒定的别名。 int a 10; int b &a; a 20; cout<<a<<b<<endl; 输出结果 : a20、b20 二、靶场复现&#xff1a; <?php highlight_file(__FILE__); error_reporting(0); include("flag.p…

留学文书可以彻底被AI取代吗?升学指导这一职业是否会被AI逼到墙角?

近日&#xff0c;ChatGPT再次“进化”&#xff0c;其最新版本ChatGPT-4又掀高潮。其生产者OpenAI 称&#xff0c;“ChatGPT-4是最先进的系统&#xff0c;能生产更安全和更有用的回复。”和上一代相比&#xff0c;GPT-4拥有了更广的知识面和更强的解决问题能力&#xff0c;在创意…

VSCode + PicGo + Github 实现markdown图床管理

目录 PicGo客户端VSvode插件 PicGo客户端 PicGo 是一个图片上传管理工具 官网&#xff1a;https://molunerfinn.com/PicGo/ github图传使用说明&#xff1a;https://picgo.github.io/PicGo-Doc/zh/guide/config.html#GitHub图床 步骤&#xff1a; 1、创建一个github公开仓库…