python爬虫基础实验:通过DBLP数据库获取数据挖掘顶会KDD在2023年的论文收录和相关作者信息

Task1

在这里插入图片描述

读取网站主页整个页面的 html 内容并解码为文本串(可使用urllib.request的相应方法),将其以UTF-8编码格式写入page.txt文件。

Code1

import urllib.requestwith urllib.request.urlopen('https://dblp.dagstuhl.de/db/conf/kdd/kdd2023.html') as response:html = response.read()html_text = html.decode()with open('page.txt','w',encoding='utf-8') as f:f.write(html_text)

Task2

打开page.txt文件,观察 Track 名称、论文标题等关键元素的组成规律。从这个文本串中提取各Track 的名称并输出(可利用字符串类型的split()和strip()方法)。

Code2

import rewith open('page.txt', 'r', encoding='utf-8') as f:content = f.read()# 使用正则表达式找到所有的 <h2 id="*"> 和 </h2> 之间的字符串
matches = re.findall(r'<h2 id=".*?">(.*?)</h2>', content)for match in matches:print(match)

Task3

可以看到, “Research Track Full Papers” 和 “Applied Data Track Full Papers” 中的论文占据了绝大多数,现欲提取这两个 Track 下的所有论文信息(包含作者列表authors、论文标题title、收录起始页startPage与终止页endPage),并按照以下格式存储到一个字典列表中,同时输出这两个 Track 各自包含的论文数量,然后把字典列表转化为 json 对象(可使用json包的相应方法),并以 2 字符缩进的方式写入kdd23.json文件中。

[{"track": "Research Track Full Papers","papers": [{"authors": ["Florian Adriaens","Honglian Wang","Aristides Gionis"],"title": "Minimizing Hitting Time between Disparate Groups with Shortcut Edges.","startPage": "1","endPage": "10"},...]}{"track": "Applied Data Track Full Papers","papers": [{"authors": ["Florian Adriaens","Honglian Wang","Aristides Gionis"],"title": "Minimizing Hitting Time between Disparate Groups with Shortcut Edges.","startPage": "1","endPage": "10"},...]}
]

Code3

import re
import jsonwith open('page.txt', 'r', encoding='utf-8') as f:content = f.read()# 定义一个列表来存储 Track 信息
tracks = []# 定义正则表达式
track_pattern = re.compile(r'<h2 id=".*?">(.*?)</h2>')
author_pattern = re.compile(r'<span itemprop="name" title=".*?">(.*?)</span>')
title_pattern = re.compile(r'<span class="title" itemprop="name">(.*?)</span>')
page_pattern = re.compile(r'<span itemprop="pagination">(.*?)-(.*?)</span>')# 找到 "Research Track Full Papers" 和 "Applied Data Science Track Full Papers" 的位置
start1 = content.find('Research Track Full Papers') - 50
start2 = content.find('Applied Data Track Full Papers') - 50
start3 = content.find('Hands On Tutorials') - 1
end = len(content)# 从整篇文本中划分出前两个Track中所有相邻"<cite"和"</cite>"之间的内容(即一篇文章的范围)
research_papers_content = re.split('<cite', content[start1:start2])[1:]
applied_papers_content = re.split('<cite', content[start2:start3])[1:]def extract_paper_info(papers_content):papers = []for paper_content in papers_content:paper_content = re.split('</cite>', paper_content)[0]papers.append(paper_content)return papersspit_research_content = extract_paper_info(research_papers_content)
spit_applied_content = extract_paper_info(applied_papers_content)# 提取每篇paper的author、title和startPage, endPage
def extract_paper_info(papers_content):papers = []for paper_content in papers_content:authors = author_pattern.findall(paper_content)titles = title_pattern.findall(paper_content)pages = page_pattern.search(paper_content)startPage, endPage = pages.groups()papers.extend([{'authors': authors, 'title': title , 'startPage': startPage , 'endPage': endPage} for title in titles])return papers# 提取 "Research Track Full Papers" 的论文信息
research_track = track_pattern.search(content[start1:start2]).group(1)
research_papers = extract_paper_info(spit_research_content)# 提取 "Applied Data Science Track Full Papers" 的论文信息
applied_track = track_pattern.search(content[start2:start3]).group(1)
#applied_papers = extract_paper_info(spit_applied_content)
applied_papers = extract_paper_info(spit_applied_content)
# 将论文信息存储到字典列表中
tracks.append({'track': research_track, 'papers': research_papers})
tracks.append({'track': applied_track, 'papers': applied_papers})# 将字典列表转换为 JSON 并写入文件
with open('kdd23.json', 'w', encoding='utf-8') as f:json.dump(tracks, f, indent=2)

Task4

基于之前爬取的页面文本,分别针对这两个 Track 前 10 篇论文的所有相关作者,爬取他们的以下信息:(1)该研究者的学术标识符orcID(有多个则全部爬取);(2)该研究者从 2020 年至今发表的所有论文信息(包含作者authors、标题title、收录信息publishInfo和年份year)。将最终结果转化为 json 对象,并以 2 字符缩进的方式写入researchers.json文件中,相应存储格式为:

[{"researcher": "Florian Adriaens","orcID": ["0000-0001-7820-6883"],"papers": [{"authors": ["Florian Adriaens","Honglian Wang","Aristides Gionis"],"title": "Minimizing Hitting Time between Disparate Groups with Shortcut Edges.","publishInfo": "KDD 2023: 1-10","year": 2023},...]},...
]   

Code4

import re
import requests
import json
import time
import random# 打开并读取 "page.txt" 文件
with open('page.txt', 'r', encoding='utf-8') as f:content = f.read()# 定义正则表达式
author_link_pattern = re.compile(r'<span itemprop="author" itemscope itemtype="http://schema.org/Person"><a href="(.*?)" itemprop="url">')
orcID_pattern = re.compile(r'<img alt="" src="https://dblp.dagstuhl.de/img/orcid.dark.16x16.png" class="icon">(.{19})</a></li>')
researcher_pattern = re.compile(r'<head><meta charset="UTF-8"><title>dblp: (.*?)</title>')
year_pattern = re.compile(r'<span itemprop="datePublished">(.*?)</span>')# 找到 "Research Track Full Papers" 和 "Applied Data Track Full Papers" 的位置
start1 = content.find('Research Track Full Papers')
start2 = content.find('Applied Data Track Full Papers')
end = len(content)# 提取这两个部分的内容,并找到前 10 个 "persistent URL:" 之间的内容
research_papers_content = content[start1:start2].split('<cite')[1:11]
applied_papers_content = content[start2:end].split('<cite')[1:11]def extract_paper_info(papers_content):papers = []for paper_content in papers_content:paper_content = re.split('</cite>', paper_content)[0]papers.append(paper_content)return papersspit_research_content = extract_paper_info(research_papers_content)
spit_applied_content = extract_paper_info(applied_papers_content)def extract_paper_info2(paper_content):final_result = []# 使用正则表达式找到所有在 "<>" 之外的字符串outside_brackets = re.split(r'<[^>]*>', paper_content)# 遍历提取到的内容,删除含有'http'的字符串及其前面的字符串flag = -1for i in range(len(outside_brackets)):if 'http' in outside_brackets[i]:flag = ifor i in range(flag + 1 , len(outside_brackets)):if outside_brackets[i]:final_result.append(outside_brackets[i])return final_result# 定义一个列表来存储研究者信息
researchers = []# 访问每篇文章里所有作者的链接,获取作者的 orcID 和论文信息
for papers in [research_papers_content, applied_papers_content]:for paper in papers:author_links = author_link_pattern.findall(paper)for link in author_links:link_content = requests.get(link)response = link_content.text#爬虫时频繁请求服务器,可能会被网站认定为攻击行为并报错"ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接",故采取以下两个措施#使用完后关闭响应link_content.close()  # 在各个请求之间添加随机延时等待time.sleep(random.randint(1, 3))researcher = researcher_pattern.search(response).group(1)orcID = orcID_pattern.findall(response)# 找到 "<li class="underline" title="jump to the 2020s">" 和 "<li class="underline" title="jump to the 2010s">" 之间的内容start = response.find('2020 &#8211; today')end = response.find('<header id="the2010s" class="hide-head h2">')# 提取这部分的内容,并找到所有 "</cite>" 之间的内容papers_content = response[start:end].split('</cite>')[0:-1]papers_dict = []for paper_content in papers_content:spit_content = extract_paper_info2(paper_content)year = int(year_pattern.search(paper_content).group(1))authors = []publishInfo = []for i in range(0 , len(spit_content) - 1):if spit_content[i] != ", " and (spit_content[i+1] == ", " or spit_content[i+1] == ":"):authors.append(spit_content[i])elif spit_content[i][-1] == '.':title = spit_content[i]for k in range(i+2 , len(spit_content)):publishInfo.append(spit_content[k])# 创建一个新的字典来存储每篇文章的信息paper_dict = {'authors': authors, 'title': title, 'publishInfo': ''.join(publishInfo), 'year': year}papers_dict.append(paper_dict)researchers.append({'researcher': researcher, 'orcID': orcID, 'papers': papers_dict})# 将字典列表转换为 JSON 并写入 "researchers.json" 文件
with open('researchers.json', 'w', encoding='utf-8') as f:json.dump(researchers, f, indent=2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/280546.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

联想笔记本的声音键没有反应怎么办?

如果我的联想笔记本电脑上的声音按钮没有响应&#xff0c;该怎么办&#xff1f; 如果我的联想笔记本电脑上的声音按钮没有响应&#xff0c;该怎么办&#xff1f; 按下按钮后我无法控制声音。 我该怎么办&#xff1f; 以下是我为您整理的关于联想笔记本声音按键无反应的相关资料…

Python 解析json文件 使用Plotly绘制地理散点图

目录 0、任务说明 1、解析json文件 2、使用Plotly绘制地理散点图 2.1 函数scatter_geo介绍 2.2 官方示例 3、根据json文件数据&#xff0c;准备绘制地理散点图的‘数据结构’ 4、完整代码及运行效果 0、任务说明 json文件中存放了关于地震的地理信息。 使用plotly模块…

练习 9 Web [SUCTF 2019]CheckIn (未拿到flag)

上传图片格式的木马文件&#xff1a; 返回 <? in contents!,存在PHP代码检测 上传非图片格式文件&#xff1a; 返回 不允许非image 修改木马PHP代码规避检测 <? ?> 改为 < script language“php”>< /script ><?php eval($_POST[shell]);?>…

初始Java篇(JavaSE基础语法)(3)

个人主页&#xff08;找往期文章包括但不限于本期文章中不懂的知识点&#xff09;&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 目录 方法的使用 方法定义 实参和形参的关系 方法重载 方法签名 递归 方法的使用 方法就是一个代码片段. 类似于 C 语言中的 "函数"…

华为openEuler系统卸载jdk

华为openEuler系统卸载jdk 1.查看openEuler上已安装的 Java 版本&#xff1a; 在终端中运行以下命令&#xff0c;查看系统中已经安装的 Java 版本。 sudo alternatives --config java这将列出已安装的 Java 版本&#xff0c;你可以看到当前使用的是哪个版本 2.卸载 Java&am…

git如何在某个commitId的状态提交到一个分支

有些时候&#xff0c;我们在使用子仓库&#xff0c;或者其他情况&#xff0c;会有一个状态是当前的git仓库是在一个commitId上&#xff0c;而没有在一个分支上&#xff1a; 这时如果想要把基于这个commitId创建一个分支&#xff0c;可以使用下面这个命令&#xff1a; git push…

软考高级:结构化需求分析概念和例题

作者&#xff1a;明明如月学长&#xff0c; CSDN 博客专家&#xff0c;大厂高级 Java 工程师&#xff0c;《性能优化方法论》作者、《解锁大厂思维&#xff1a;剖析《阿里巴巴Java开发手册》》、《再学经典&#xff1a;《Effective Java》独家解析》专栏作者。 热门文章推荐&am…

机器人路径规划:基于冠豪猪优化算法(Crested Porcupine Optimizer,CPO)的机器人路径规划(提供MATLAB代码)

一、机器人路径规划介绍 移动机器人&#xff08;Mobile robot&#xff0c;MR&#xff09;的路径规划是 移动机器人研究的重要分支之&#xff0c;是对其进行控制的基础。根据环境信息的已知程度不同&#xff0c;路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或…

Debezium vs OGG vs Tapdata:如何实时同步 Oracle 数据到 Kafka 消息队列?

随着信息时代的蓬勃发展&#xff0c;企业对实时数据处理的需求逐渐成为推动业务创新和发展的重要驱动力。在这个快速变化的环境中&#xff0c;许多企业选择将 Oracle 数据库同步到 Kafka&#xff0c;以满足日益增长的实时数据处理需求。本文将深入探讨这一趋势的背后原因&#…

Vue+Element-UI Table表格实现复选框单选效果(隐藏表头上的全选Checkbox)

实现效果 完整代码 <div class"box-pos"><el-table ref"table" :header-cell-style"{ color: #FFF, background: #333 }":cell-style"{ color: #FFF, background: #333 }" :data"grListData" style"width: 1…

01分布式搜索引擎ES

分布式搜索引擎ES 1.初识elasticsearch1.1.了解ES1.2.倒排索引1.3.es的一些概念 2.索引库操作2.1.mapping映射属性2.2.索引库的CRUD 3.文档操作3.1.新增文档3.2.查询文档3.3.删除文档3.4.修改文档3.5.总结 4.RestAPI4.0.导入Demo工程4.1.创建索引库4.2.删除索引库4.3.判断索引库…

Linux环境开发工具之vim

前言 上一期我们已经介绍了软件包管理器yum&#xff0c; 已经可以在linux上查找、安装、卸载软件了&#xff0c;本期我们来介绍一下文本编辑器vim。 本期内容介绍 什么是vim vim的常见的模式以及切换 vim命令模式常见的操作 vim底行模式常见的操作 解决普通用户无法执行sudo问…

Apache Superset

前言 最近在准备一个小的项目&#xff0c;需要对 Hive 的数据进行展示&#xff0c;所以想到了把 Hive 的数据导出到 MySQL 然后用 Superset 进行展示。 Superset 1.1 Superset概述 Apache Superset是一个现代的数据探索和可视化平台。它功能强大且十分易用&#xff0c;可对接…

ASP .Net Core 配置集合 IConfiguration 的使用

&#x1f433;简介 IConfiguration 是 ASP.NET Core 中的一个接口&#xff0c;用于表示配置集合。以下是关于 IConfiguration 的详细介绍&#xff1a; 作用&#xff1a;IConfiguration 允许开发人员从各种来源&#xff08;如文件、环境变量、命令行参数等&#xff09;读取应用…

wireshark 使用实践

1、打开wireshark软件&#xff0c;选择网卡&#xff0c;开始抓包 2、打开浏览器&#xff0c;访问一个http网站&#xff1a;这里我用 【邵武市博物馆】明弘治十一年&#xff08;1498&#xff09;铜钟_文物资源_福建省文 测试&#xff0c;因为它是http的不是https&#xff0c;方…

Oracle19C静默安装教程

文章目录 一、安装前的准备1、安装Linux操作系统2、配置网络源或者本地源3、hosts文件配置 二、准备安装环境1、安装依赖包2、创建oracle用户组3、配置系统内核参数4、关闭selinux5、配置oracle用户环境6、修改用户的Shell限制 三、静默安装Oracle数据库1、创建oracle安装目录2…

申请双软认证需要哪些材料?软件功能测试报告怎么获取?

“双软认证”是指软件产品评估和软件企业评估&#xff0c;其中需要软件测试报告。 企业申请双软认证除了获得软件企业和软件产品的认证资质&#xff0c;同时也是对企业知识产权的一种保护方式&#xff0c;更可以让企业享受国家提供给软件行业的税收优惠政策。 那么&#xff0c;…

[BT]BUUCTF刷题第2天(3.20)

第2天&#xff08;共5题&#xff09; Web [ACTF2020 新生赛]Exec Payload&#xff1a;target127.0.0.1;cat /flag 分号;在许多shell中用作命令分隔符&#xff0c;意味着在执行完前一个命令&#xff08;这里是设置target变量&#xff09;后&#xff0c;接着执行cat /flag命令…

C++项目 -- 负载均衡OJ(一)compile_server

C项目 – 负载均衡OJ&#xff08;二&#xff09;compile_server 文章目录 C项目 -- 负载均衡OJ&#xff08;二&#xff09;compile_server一、compile_server设计1.总体服务流程 二、compiler.hpp三、runner.hpp四、compile_run.hpp五、compile_server.cc5.1.编译功能调试&…

【CNN轻量化】ParameterNet: Parameters Are All You Need 参数就是你所需要的

论文链接&#xff1a;http://arxiv.org/abs/2306.14525 代码链接&#xff1a;https://github.com/huawei-noah/Efficient-AI-Backbones 一、摘要 现有的低FLOPs模型&#xff08;轻量化模型&#xff09;无法从大规模预训练中受益。本文旨在增加大规模视觉预训练模型中的参数数量…