一文轻松看懂线性回归分析的交互作用!

作者:丁点helper

来源:丁点帮你

前几天的文章,我们聚焦在回归分析,今天来看看在回归分析中常常要研究的一类难点问题——交互作用的探究。

交互(interaction),字面上不太好理解,但是从数学表达上却很简单。

如果想要研究两个自变量如X1和X2的交互作用,通常的做法就是将两个变量相乘,即X1*X2,然后把乘积项纳入到回归方程。

操作起来很简单,但交互项的纳入对于回归系数的解读却带来了新的问题。

以一个很经典的例子来说明。

含交互项的回归方程

多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。

我们想通过线性回归研究教育程度、性别对个人收入的影响,首先,不纳入交互项的回归方程为:

其中,Y表示收入,X1表示“教育年限”(定量变量),X2表示“性别”(分类变量,用”0“为女性;“1“表示男性)。

通过估计以上回归方程X1和X2的回归系数,β1和β2,即可定量地衡量出教育程度、性别对收入的影响。

比如,β1的含义即为:控制性别后,教育程度每增加一年,个人收入增加的量。

这是我们前面讲过的,很好理解。

现在,我们希望考虑”教育程度“和”性别“的交互作用,因此将把两个变量的交互项纳入回归方程,即为:

其中,X1X2代表交互项,这里也属于多重线性回归的范畴,因为我们可以令X3=X1X2,将其视为一个新变量,则上式就可以看做是拥有三个自变量的一般线性回归。

思考:现在方程中X1的回归系数β1还能按照上面的含义来解读吗?

我们尝试做一下。

要衡量X1对Y的作用,归根结底,是要看,当X1变化一个单位时,Y怎么变化(明白这一点很基础也很重要)。

因此,我们可以这样来做:

当X1=0时(代入有交互项的方程,下同),

由此,可以发现,加入交互项后,X1(即教育程度),每变化一个单位(比如增加一年),收入的变化不仅取决于β1,而且还取决于β3和X2。

因此,我们不能再直接将β1解读为教育程度对收入的影响。

同理,β2也不能直接解读为性别对收入的影响。

在这样的情况下,到底应该如何来对这三个回归系数进行解读呢?思路其实很简单,诀窍就是分别让X1和X2等于0。

由此来看,加入交互作用后,回归系数(β1和β2)的解读需要加入一定的限定条件,比如”教育程度为0“、或者特定为“女性人群“。

这实际上是出于简单的数学考虑:因为让一个变量等于0,我们就可以消除交互项,然后单独地分析另一个变量的效应,这种思路特别方便,大家不妨在自己的研究中使用。

说完β1和β2,那β3怎么解读呢?严格而言,β3才是真正交互项的系数,才是做交互研究最关注的部分。

交互项回归系数的解读

多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。

上面我们讲了β1的含义是”对于女性人群,教育程度每增加一年,其收入的增加量“。很自然的想,那对于男性人群,教育每增加一年,收入增加多少呢?

前面我们计算了,X1从0变化到1时,

我们知道,X2表示的是性别这个变量,X2=1代表男性,那如果我们直接把X2=1代入上式呢:

由此,我们就得到了:对于X2=1(即男性人群),当X1增加一个单位时,Y的变化量为(β1 + β3)。

因此,可以把(β1 + β3)解读为:对于男性人群,教育程度每增加一年,收入的增加量。

把男性和女性放在一起对照看一下:

β1:对于女性人群,教育程度每增加一年,其收入的增加量。

β1 + β3:对于男性人群,教育程度每增加一年,其收入的增加量。

现在,β3(即交互项的回归系数)的含义是不是一目了然。它表示,教育程度每增加一年时,男性和女性收入增加的差值。

代入具体的数字看起来会更容易。

比如,我们让β1 = 200;β2 = 300;β3 = 50,就可以很清楚地看到:

对于女性来讲,教育程度每增加一年,收入会增加200(β1 的含义);

对于男性来讲,教育程度每增加一年,收入会增加250(β1 + β3的含义)。

而β3就表示,同样增加一年的教育程度,收入的增加量,男性比女性多50。

这多出来的50就衡量了性别和教育的交互作用。

理清了这三个系数的意义,我们再来看交互作用的真正含义,就会更加明朗:

交互作用实际上影响的是一种关系,什么关系?X1和Y的关系,或者X2和Y的关系。

此话怎讲?我们看,当不加入交互项的时候,无论男性还是女性,教育程度增加一年,收入的增加量是一样的,都为β1。

这里的β1 可以视作教育程度对收入的影响,实际上是两者相关关系的量化。

但是,加入交互作用后,教育程度增加一年,收入的增加量,男性和女性就不一样了,一个是β1 + β3,另一个是β1。

不难发现,教育程度对收入的影响随着性别的变化发生了变化。

所以,从本质上看,交互项衡量的了性别对【教育程度与收入关系】的影响。用括号括起来就是希望大家能看的更清楚:性别和教育的交互项影响的既不是教育程度也不是收入,而是它们两者的关系。

如果数学基础不错,则可以将“【教育程度与收入关系】”理解为回归方程的X1(教育程度)的斜率(斜率的定义就是X1变化一个单位,对应的Y的变化量),所以,本质上,交互项影响的是斜率!

同样地,交互项因为是乘积的形式,所以它也衡量了教育程度对(性别与收入关系)的影响。

如何进行分析,做法其实完全一致,首先分别计算X2=0和X2=1时候,Y的变化量(代表了男女收入的差异):

我们知道X2表示性别,所以,根据上式,可以将β3解读为:教育程度的变化,带来的男女收入水平差异的变化,注意这里说的是”差异“,即男性工资高于女性的那一部分(如果β3是负数,则表示男性工资更低)。

因此,综合来看,交互项是可以从两个角度去理解和解读的,这符合它进入回归方程的方式(X1X2)。

针对具体的问题,我们都可以采取上面说的这种”归零法“去分析和拆解,即分别一个自变量等于0,然后分析另一个自变量回归系数的含义。

同时,专门对于交互项的解读,我们要知道它刻画的其实是对回归斜率或者回归效应值(β)的影响。

比如教育程度和性别的交互,既影响了收入对教育程度的斜率,也影响了收入对性别的斜率。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/28221.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多元线性回归模型及stata实现:总论

多元线性回归模型及stata实现:总论 一、模型 Yβ0β1X1β2X2⋯βnXne Y: Dependent variable(因变量、应变量、反应变量、响应变量、被解释变量等)X1、X2⋯Xn:Independent variable(自变量、解释变量、控制变量&…

Linux 系统使用 git 提交代码-- git 的安装及使用(简明教学指南)

序 2023/02/09 晚 鉴于本篇文章收藏量比较多,那就给大家分享点在实际工作中使用频率最高的工作流命令吧。 场景如下(多人共同开发一个项目):我叫小明,参与了一个名为 chatGPT 的项目,这个 AI 最近很火,就以此作为例…

慕课前端售1299元的面试题【第二阶段】汇总 day05

上一篇链接 如果有看不懂的,别硬看,直接chatgpt,让它回答。 - 我的博客需要缩宽页面观看,图片无法均放,很抱歉。 1. 请说明 Ajax Fetch Axios 三者的区别? 1. 用 XMLHttpRequest 实现 Ajax function aja…

Javaweb复习之HTTPTomcatServelet

1.Web概述 1.1 Web和JavaWeb的概念 Web是全球广域网,也称为万维网(www),能够通过浏览器访问的网站。 JavaWeb就是用Java技术来解决相关web互联网领域的技术栈 1.2 JavaWeb技术栈 B/S 架构:Browser/Server,浏览器/服务器 架构模…

DDD领域驱动设计实战-DDD微服务代码结构

更多内容关注微信公众号:fullstack888 DDD并没有给出标准的代码模型,不同的人可能会有不同理解。按DDD分层架构的分层职责定义,在代码模型里分别为用户接口层、应用层、领域层和基础层,建立了 interfaces、application、domain 和…

windows10环境下安装docker、Ubuntu、gitlab、wsl2

一、概述 By星年 文章参考 常用命令参考:(为了方便复制命令都做了换行处理,可直接双击复制。) 进docker terminal: docker exec -it gitlab /bin/bash 查看容器列表: docker ps -a 查看镜像列表: docker images git…

AIGC的发展史:从模仿到创造,AI的创造性探索

在 AI时代,人工智能不再是简单的机器,而是一个具有无限创造力的创造者。AIGC的诞生是人工智能从模仿到创造的一种进步,也是对人类创造力的一种新探索。 而这种由AI生成的内容究竟是如何发展而来的呢?在本文中,我们将探…

如何解决微信支付回调:支付成功及支付失败都不进行任何操作(支付坑)

这几天都在用微信支付这块功能,不得不吐槽一下微信支付的小坑 关于微信提供JSAPI文档,本来想着他们写的开发文档,肯定是没有任何问题。 结果在开发测试中,支付完成后或者支付失败都没任何效果。 我已经在JS里面做了跳转&#xff0…

android微信支付返回-1,支付失败总结!

解决办法1:看看二次生成sign的参数顺序是否跟我发的一致!很坑爹,必须一样才行! 解决办法2:请求得到prepayid参数的url必须是图中的Url

微信支付下载对账单400Bad Request问题解决方式

今天在做项目时, 需要用到微信支付的对账接口, 看了好多人的反馈, 加上自己的测试, 在用API V3生成了Sign后,对download_url进行Get请求访问时, 依然会出现问题, 就是Nginx报错400 Bad Request 看了好多人的文章, 基本上都是用的调用sdk生成的httpClient再次进行调用, 如下图 …

微信支付异常(“应答的微信支付签名验证失败“)记录

原因是: 配置错了“微信支付平台证书”; 如何解决: 1.下载 微信支付平台证书下载工具(Certificate Downloader)https://github.com/wechatpay-apiv3/CertificateDownloader 得到 CertificateDownloader-1.1.jar 2.执行命令 java -jar Cer…

postman-模拟上传图片

一、Chrome打开layui : 图片上传 右键打开检查,选择network,上传图片查看到: 二、postman测试 打开postman先设置post,并将url填好 : https://httpbin.org/post 选择form-data:添加key/value : key为与后台约定字段(一…

【苹果群发iMessage推送位置推】软件安装将会按照 Developer Program License Agreement

推荐内容IMESSGAE相关 作者推荐内容iMessage苹果推软件 *** 点击即可查看作者要求内容信息作者推荐内容1.家庭推内容 *** 点击即可查看作者要求内容信息作者推荐内容2.相册推 *** 点击即可查看作者要求内容信息作者推荐内容3.日历推 *** 点击即可查看作者要求内容信息作者推荐…

风辞远的科技茶屋:可怖的AI

大家好,我是脑极体的风辞远。一直以来我们都在写大块文章,很少有机会跟大家聊天。时间长了,总觉得这种方式有一点冷漠感,不够轻松,加上往往每篇文章只聚焦一个话题,而我们产能有限,就会有很多值…

千万别再乱点黄色APP了!

上一篇:文心一言员工跳槽工资翻倍,猎头:百万年薪很正常 网络诈骗千千万,涉黄APP占一半。 小伙来自山东菏泽,失手在手机上下载了非法的涉黄APP,当他准备观看视频时发现,需要充值成为会员或完成任…

如何分析系统平均负载过高?

文章目录 前言uptime命令平均负载平均负载到底是多少才合理平均负载和CPU的关系CPU与进程1比1,CPU使用率高导致负载变高I/O高,导致负载高进程数超过CPU数,导致负载高 前言 我相信你应该用过uptime命令查询系统负载的情况,或者在各…

线上负载过高排查(top/vmstat/ifstat/free/df)

目录 一、五大命令 二、故障排查步骤 1、top命令找出CPU占比最高的 2、ps -ef 或者 jps -l进一步定位 3、ps -mp位到具体线程或者代码 4、jstack精准定位到错误的地方 本文通过学习:周阳老师-尚硅谷Java大厂面试题第二季 总结的LinuxJDK命令操作相关的笔记 一…

解决Linux 负载过高问题过程记录

解决问题的思路 1.top命令查看该机器的负载状况 2.cd /proc/pid 查看对应高占用程序的位置 3.进入对应程序中查看日志,根据CPU和内存这两个因素分析 4.ps -ajxf 查看进程及其之下的线程,通过stat查看是否存在D僵尸进程 1.什么是负载过高 1.1load A…

假如ChatGPT 去面试前端工程师,结果会怎么样?

近日,有个叫 ChatGPT 的同学来我司面试前端,考考他面试八股文。先来问问闭包。 第一问,说说 JS 闭包 追问,详细讲讲闭包 由于篇幅太长,转成文字,以下皆为 ChatGPT 回答 闭包是一个非常重要的 JavaScript 概…

青椒肉丝饭

今天第一次来华德吃饭,为了吃这顿饭跑遍了半个上海。 先是去长乐路上的大铁门排挡吃自助,结果人家收摊了,估计都回家过年了吧。 然后又去新华路上的粮仓饭湘,结果人满为患,连个站的地方都没有。 最后回到北新泾这里…