【UCB CS 61B SP24】Lecture 21: Data Structures 5: Priority Queues and Heaps 学习笔记

本文介绍了优先队列与堆,分析了最小堆的插入与删除过程,并用 Java 实现了一个通用类型的最小堆。

1. 优先队列

1.1 介绍

优先队列是一种抽象数据类型,其元素按照优先级顺序被处理。不同于普通队列的先进先出(FIFO),优先队列每次取出优先级最高(或最低)的元素。

在 Java 中,PriorityQueue 是基于(Heap)实现的,默认使用自然排序(最小堆),也可以通过自定义 Comparator 调整优先级顺序:

package CS61B.Lecture21;import java.util.Collections;
import java.util.List;
import java.util.PriorityQueue;public class PriorityQueueDemo {public static void main(String[] args) {PriorityQueue<Integer> Q = new PriorityQueue<>();  // 默认为小根堆PriorityQueue<Integer> RQ = new PriorityQueue<>(Collections.reverseOrder());  // 大根堆for (int i = 5; i > 0; i--)Q.add(i);  // 也可以用 offer() 方法System.out.println(Q);  // [1, 2, 4, 5, 3],直接输出不一定有序while (!Q.isEmpty())System.out.print(Q.poll() + " ");  // 也可以用 remove() 方法,输出 1 2 3 4 5System.out.println();RQ.addAll(List.of(8, 6, 7, 10, 9));while (RQ.peek() != null)System.out.print(RQ.remove() + " ");  // 10 9 8 7 6System.out.println();}
}

堆是一种完全二叉树,完全二叉树是指除了最后一层外,其他层的节点都必须是满的(所有可能的节点都存在),且最后一层的节点必须尽可能靠左排列。最后一层可以不满,但所有节点必须集中在左侧,中间不能有空缺。完全二叉树的高度为 ⌊ l o g n ⌋ + 1 \lfloor log n\rfloor + 1 logn+1,在相同节点数的二叉树中高度最小。

堆又分为最小堆和最大堆:

  • 最小堆:父节点的值 ≤ 子节点的值,堆顶元素为最小值;
  • 最大堆:父节点的值 ≥ 子节点的值,堆顶元素为最大值。

堆通常用数组实现,利用完全二叉树的性质能够简化父子节点索引计算,优先级最高的元素一定在堆顶,也就是索引为 0 的节点:

  • 父节点索引:(i - 1) / 2
  • 左子节点索引:2 * i + 1
  • 右子节点索引:2 * i + 2

下图是一个最小堆的示例:

在这里插入图片描述

1.2 插入

我们以最小堆为例,插入步骤如下:

  • 将新元素插入到堆的末尾(数组的最后一个位置)。
  • 上浮(Swin)调整:从新元素的位置开始,与其父节点比较。
    • 如果新元素的值小于父节点,则交换两者的位置。
    • 重复此过程,直到新元素到达根节点,或满足父节点 ≤ 当前节点的条件。

我们用图片来展示一下最小堆的插入与上浮过程,首先在末尾插入节点 3,然后判断与其父节点的大小关系,小于父节点 5,因此与父节点交换位置,然后继续判断还是小于其父节点 5,和父节点交换,最后判断该节点大于等于其父节点 1,完成上浮调整:

在这里插入图片描述

1.3 删除

还是以最小堆为例,删除步骤如下:

  • 移除堆顶元素(最小值),将其返回。
  • 将堆的最后一个元素移动到堆顶(填补空缺,同时保持完全二叉树的状态)。
  • 下沉(Sink)调整:从堆顶开始,与左右子节点中的较小者比较。
    • 如果当前节点的值大于较小子节点,则交换两者的位置。
    • 重复此过程,直到当前节点到达叶子节点,或满足父节点 ≤ 任意子节点的条件。

同样用图片展示一下最小堆的删除与下沉过程,我们在前面的最小堆上删除堆顶元素(最小值),删除后先将最后一个元素 5 移动到堆顶,然后进行下沉调整,判断 5 大于较小子节点 1,因此与 1 进行交换,接着继续判断还是小于较小子节点 3,因此与 3 进行交换,交换后已经为叶子节点,完成下沉调整:

在这里插入图片描述

可以看到堆的上浮与下沉操作最坏情况下就是遍历树的高度,因此添加和删除操作的时间复杂度最坏情况下均为 O ( l o g n ) O(log n) O(logn)。优先队列与其他数据结构的时间复杂度对比如下:

数据结构插入查看最值删除最值空间复杂度适用场景
有序数组 O ( n ) O(n) O(n) O ( 1 ) O(1) O(1) O ( n ) O(n) O(n) O ( n ) O(n) O(n)静态数据、极少插入
平衡搜索树 O ( l o g n ) O(log n) O(logn) O ( l o g n ) O(log n) O(logn) O ( l o g n ) O(log n) O(logn) O ( n ) O(n) O(n)需范围查询或全局有序
哈希表 O ( 1 ) O(1) O(1) O ( n ) O(n) O(n) O ( n ) O(n) O(n) O ( n ) O(n) O(n)快速查找某个键、无顺序要求
二叉堆 O ( l o g n ) O(log n) O(logn) O ( 1 ) O(1) O(1) O ( l o g n ) O(log n) O(logn) O ( n ) O(n) O(n)动态数据、频繁插入和提取

2. Java 实现最小堆

相信看完上面的讲解也能感觉到堆的实现并不复杂,Java 实现最小堆代码如下:

package CS61B.Lecture21;public class MinHeap<T extends Comparable<T>> {private T[] heap;private int size;private static final int DEFAULT_CAPACITY = 2;  // 默认容量public MinHeap() {this(DEFAULT_CAPACITY);}public MinHeap(int capacity) {heap = (T[]) new Comparable[capacity];size = 0;}/** 核心操作:添加 */public void add(T x) {if (size >= heap.length) resize();heap[size] = x;swim(size);  // 从末尾开始上浮size++;}/** 核心操作:删除并返回堆顶元素(最小值) */public T remove() {if (size == 0) return null;T root = heap[0];heap[0] = heap[--size];heap[size] = null;  // 清除引用,防止内存泄漏sink(0);  // 从根节点开始下沉return root;}/** 核心操作:返回堆顶元素(最小值) */public T peek() {return heap[0];}/** 获取大小 */public int size() {return size;}/** 是否为空 */public boolean isEmpty() {return size == 0;}/** 核心操作:上浮 */private void swim(int idx) {int parent = idx - 1 >> 1;while (parent >= 0 && heap[idx].compareTo(heap[parent]) < 0) {swap(idx, parent);idx = parent;parent = idx - 1 >> 1;}}/** 核心操作:下沉 */private void sink(int idx) {int left = (idx << 1) + 1;  // 左子节点的索引while (left < size) {  // 当存在子节点即当前节点还不是叶子节点时循环int right = left + 1;int minChild = left;  // 先假设最小的子节点为左子节点if (right < size && heap[right].compareTo(heap[left]) < 0) minChild = right;if (heap[idx].compareTo(heap[minChild]) <= 0) break;  // 如果已经小于等于最小子节点则完成下沉swap(idx, minChild);idx = minChild;left = (idx << 1) + 1;}}/** 将容量扩容至原来的两倍 */private void resize() {int newCapacity = heap.length * 2;T[] newHeap = (T[]) new Comparable[newCapacity];System.arraycopy(heap, 0, newHeap, 0, size);heap = newHeap;}/** 交换 heap 中两个位置的元素 */private void swap(int idx1, int idx2) {T temp = heap[idx1];heap[idx1] = heap[idx2];heap[idx2] = temp;}/** 测试 */public static void main(String[] args) {MinHeap<Integer> minHeap = new MinHeap<>();for (int i = 5; i > 0; i--) minHeap.add(i);while (!minHeap.isEmpty())System.out.print(minHeap.remove() + " ");System.out.println();}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/28283.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DeepSeek-R2:AI大模型新纪元的破晓之光

注&#xff1a;此文章内容均节选自充电了么创始人&#xff0c;CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》&#xff08;人工智能科学与技术丛书&#xff09;【陈敬雷编著】【清华大学出版社】 文章目录 DeepSeek大模型技术系列十五DeepSeek大模型技术系列十五》DeepS…

UniApp+Vue3实现高性能无限滚动卡片组件:垂直滑动、触摸拖拽与动态导航的完美结合

引言 在移动应用开发中&#xff0c;流畅且吸引人的用户界面对于提升用户体验至关重要。本文将详细介绍如何使用UniApp和Vue3框架构建一个具有垂直方向无限滚动卡片、触摸拖拽支持、同步导航栏和平滑动画效果的高级UI组件。我们将通过代码分析每个功能的实现细节&#xff0c;帮助…

LeetCode 热题 100----1.两数之和

LeetCode 热题 100----1.两数之和 题目描述 我的解法 语言&#xff1a;js 思路就是&#xff1a;用双重循环去找哪两个数字相加等于target&#xff0c;目前的时间复杂度为O(n2)&#xff0c;之后右优化思路再更新。

华为云 | 快速搭建DeepSeek推理系统

DeepSeek&#xff08;深度求索&#xff09;作为一款国产AI大模型&#xff0c;凭借其高性能、低成本和多模态融合能力&#xff0c;在人工智能领域崛起&#xff0c;并在多个行业中展现出广泛的应用潜力。 如上所示&#xff0c;在华为云解决方案实践中&#xff0c;华为云提供的快速…

本地部署阿里万象2.1文生视频模型(Wan2.1-T2V)完全指南

在生成式AI技术爆发式发展的今天,阿里云开源的万象2.1(Wan2.1)视频生成模型,为创作者提供了从文字/图像到高清视频的一站式解决方案。本文针对消费级显卡用户,以RTX 4060 Ti 16G为例,详解本地部署全流程与性能调优方案,涵盖环境配置、多模型选择策略、显存优化技巧及实战…

FPGA标准库-Open Logic

在现代技术发展的浪潮中&#xff0c;开源项目已经成为了推动技术创新和发展的核心力量。无论是人工智能、区块链、云计算&#xff0c;还是传统的嵌入式开发、操作系统&#xff0c;开源项目都在其中扮演着至关重要的角色。它们不仅促进了技术的快速迭代&#xff0c;也为全球开发…

React antd的datePicker自定义,封装成组件

一、antd的datePicker自定义 需求&#xff1a;用户需要为日期选择器的每个日期单元格添加一个Tooltip&#xff0c;当鼠标悬停时显示日期、可兑换流量余额和本公会可兑流量。这些数据需要从接口获取。我需要结合之前的代码&#xff0c;确保Tooltip正确显示&#xff0c;并且数据…

【算法题解答·一】二分法

【算法题解答一】二分法 接上文 【算法方法总结一】二分法的一些技巧和注意事项 二分法相关题目如下&#xff1a; 34.在排序数组中查找元素第一和最后一个位置 使用 左闭右闭&#xff0c;[left,right]关键在于 nums[mid] target 的部分找 第一个 target 的过程中&#xff0…

Non-Homophilic Graph Pre-Training and Prompt Learning

Non-Homophilic Graph Pre-Training and Prompt Learning KDD25 ​#paper/⭐#​ 目的&#xff1a;对异配图进行prompt ‍ ​​ 方法 邻居节点的综合嵌入 s v 1 ∣ V ( S v ) ∣ ∑ u ∈ V ( S v ) h u ⋅ s i m ( h u , h v ) , \mathbf{s}_{v}\frac{1}{|V(S_{v})|}\su…

BUU44 [BJDCTF2020]ZJCTF,不过如此1 [php://filter][正则表达式get输入数据][捕获组反向引用][php中单双引号]

题目&#xff1a; 我仿佛见到了一位故人。。。也难怪&#xff0c;题目就是ZJCTF 按要求提交/?textdata://,I have a dream&filenext.php后&#xff1a; ......不太行&#xff0c;好像得用filephp://filter/convert.base64-encode/resourcenext.php 耶&#xff1f;那 f…

掌握 findIndex、push 和 splice:打造微信小程序的灵活图片上传功能✨

文章目录 ✨ 掌握 findIndex、push 和 splice&#xff1a;打造微信小程序的灵活图片上传功能 &#x1f31f;示例场景&#xff1a;小程序图片上传&#x1f33c; 认识 findIndex定义语法在代码中的应用示例当前行为 &#x1f680; 认识 push定义语法在代码中的应用示例特点 ✂️ …

山西青年杂志山西青年杂志社山西青年编辑部2025年第3期目录

青年争鸣 教师发展中心行动转向的价值意蕴分析框架研究与启示 于宝证;李军红;郑钰莹;何易雯; 产教融合视角下职业本科工商管理专业人才培养模式探析 杜芯铭; 青年教育研究 教育数字化背景下高职院校的课堂教学研究 张晨; 统筹职业教育、高等教育、继续教育协同…

神经网络:AI的网络神经

神经网络&#xff08;Neural Networks&#xff09;是深度学习的基础&#xff0c;是一种模仿生物神经系统结构和功能的计算模型。它由大量相互连接的节点&#xff08;称为神经元&#xff09;组成&#xff0c;能够通过学习数据中的模式来完成各种任务&#xff0c;如图像分类、语音…

计算机视觉|ViT详解:打破视觉与语言界限

一、ViT 的诞生背景 在计算机视觉领域的发展中&#xff0c;卷积神经网络&#xff08;CNN&#xff09;一直占据重要地位。自 2012 年 AlexNet 在 ImageNet 大赛中取得优异成绩后&#xff0c;CNN 在图像分类任务中显示出强大能力。随后&#xff0c;VGG、ResNet 等深度网络架构不…

储油自动化革命,网关PROFINET与MODBUS网桥的无缝融合,锦上添花

储油行业作为能源供应链的关键环节&#xff0c;其自动化和监控系统的可靠性和效率至关重要。随着工业4.0的推进&#xff0c;储油设施越来越多地采用先进的自动化技术以提高安全性、降低成本并优化运营。本案例探讨了如何通过使用稳联技术PROFINET转MODBUS模块网关网桥&#xff…

解锁Egg.js:从Node.js小白到Web开发高手的进阶之路

一、Egg.js 是什么 在当今的 Web 开发领域&#xff0c;Node.js 凭借其事件驱动、非阻塞 I/O 的模型&#xff0c;在构建高性能、可扩展的网络应用方面展现出独特的优势 &#xff0c;受到了广大开发者的青睐。它让 JavaScript 不仅局限于前端&#xff0c;还能在服务器端大展身手&…

python:pymunk + pygame 模拟六边形中小球弹跳运动

向 chat.deepseek.com 提问&#xff1a;编写 python 程序&#xff0c;用 pymunk, 有一个正六边形&#xff0c;围绕中心点缓慢旋转&#xff0c;六边形内有一个小球&#xff0c;六边形的6条边作为墙壁&#xff0c;小球受重力和摩擦力、弹力影响&#xff0c;模拟小球弹跳运动&…

学习 Wireshark 分析 Android Netlog

Android 设备抓取的日志中,netlog 文件夹包含.cap文件可以使用Wireshark工具查看网络日志。 Wireshark 分析 DNS 步骤 在使用Wireshark分析网路日志时,要检查DNS解析是否正常,可以按照以下步骤操作: 识别DNS查询和回应 使用过滤器 udp.port == 53 来查看所有DNS相关的流量…

OpenHarmony启动系统-U-Boot简介和源码下载与编译

OpenHarmony系统启动流程简述 设备上电后&#xff0c;OpenHarmony系统大致经历以下3个阶段&#xff1a; 1.BootRom代码引导加载UBoot&#xff1b; 2.UBoot启动初始化硬件资源&#xff0c;引导并加载系统内核(Linux内核)&#xff1b; 3.Kernel(LiteOs,Linux内核)启动、加载驱动…

论文笔记-NeurIPS2017-DropoutNet

论文笔记-NeurIPS2017-DropoutNet: Addressing Cold Start in Recommender Systems DropoutNet&#xff1a;解决推荐系统中的冷启动问题摘要1.引言2.前言3.方法3.1模型架构3.2冷启动训练3.3推荐 4.实验4.1实验设置4.2在CiteULike上的实验结果4.2.1 Dropout率的影响4.2.2 实验结…