算法公式汇总

文章目录

    • 三角函数
      • 定义式
      • 诱导公式
      • 平方关系
      • 两角和与差的三角函数
      • 积化和差公式
      • 和差化积公式
      • 倍角公式
      • 半角公式
      • 万能公式
      • 其他公式
      • 反三角函数恒等式
    • 三角函数
      • 定义式

三角函数

定义式

在这里插入图片描述

余切:  c o t A = 1 t a n A \text { 余切:} \ cotA = \frac{1}{tanA}  余切: cotA=tanA1
正切:  s e c A = 1 c o s A \text { 正切:} \ secA = \frac{1}{cosA}  正切: secA=cosA1
余割:  c s c A = 1 s i n A \text { 余割:} \ cscA = \frac{1}{sinA}  余割: cscA=sinA1

反正切:  a r c t a n ( t a n X ) = t a n ( a r c t a n X ) = X \text { 反正切:} \ arctan(tanX) = tan(arctanX) = X  反正切: arctan(tanX)=tan(arctanX)=X


诱导公式

  • sin ⁡ ( − α ) = − sin ⁡ α
  • cos ⁡ ( − α ) = cos ⁡ α
  • sin ⁡ ( π 2 − α ) = cos ⁡ α
  • cos ⁡ ( π 2 − α ) = sin ⁡ α
  • sin ⁡ ( π 2 + α ) = cos ⁡ α
  • cos ⁡ ( π 2 + α ) = − sin ⁡ α
  • sin ⁡ ( π − α ) = sin ⁡ α
  • cos ⁡ ( π − α ) = − cos ⁡ α
  • sin ⁡ ( π + α ) = − sin ⁡ α
  • cos ⁡ ( π + α ) = − cos ⁡ α

平方关系

1 + t a n 2 α = s e c 2 α 1 + tan^2α = sec^2α 1+tan2α=sec2α
1 + c o t 2 α = c s c 2 α 1 + cot^2α = csc^2α 1+cot2α=csc2α
s i n 2 α + c o s 2 α = 1 sin^2α + cos^2α = 1 sin2α+cos2α=1

两角和与差的三角函数

s i n ⁡ ( α + β ) = s i n ⁡ α c o s ⁡ β + c o s ⁡ α s i n ⁡ β sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β sin(α+β)=sinαcosβ+cosαsinβ
c o s ⁡ ( α + β ) = c o s ⁡ α c o s ⁡ β − s i n ⁡ α s i n ⁡ β cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β cos(α+β)=cosαcosβsinαsinβ
s i n ⁡ ( α − β ) = s i n ⁡ α c o s ⁡ β − c o s ⁡ α s i n ⁡ β sin ⁡ ( α − β ) = sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β sin(αβ)=sinαcosβcosαsinβ
c o s ⁡ ( α − β ) = c o s ⁡ α c o s ⁡ β + s i n ⁡ α s i n ⁡ β cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β cos(αβ)=cosαcosβ+sinαsinβ
t a n ⁡ ( α + β ) = t a n ⁡ α + t a n ⁡ β 1 − t a n ⁡ α t a n ⁡ β tan ⁡ ( α + β ) = \frac{ tan ⁡ α + tan ⁡ β}{1 - tan ⁡ α tan ⁡ β} tan(α+β)=1tanαtanβtanα+tanβ
t a n ⁡ ( α − β ) = t a n ⁡ α − t a n ⁡ β 1 + t a n ⁡ α t a n ⁡ β tan ⁡ ( α − β ) = \frac{ tan ⁡ α - tan ⁡ β}{1 + tan ⁡ α tan ⁡ β} tan(αβ)=1+tanαtanβtanαtanβ

积化和差公式

c o s ⁡ α c o s ⁡ β = 1 2 [ c o s ⁡ ( α + β ) + c o s ( α − β ) ] cos ⁡ α cos ⁡ β = \frac{1}{2} [ cos ⁡ ( α + β ) + c o s ( α − β ) ] cosαcosβ=21[cos(α+β)+cos(αβ)]
c o s ⁡ α s i n ⁡ β = 1 2 [ s i n ⁡ ( α + β ) − s i n ( α − β ) ] cos ⁡ α sin ⁡ β = \frac{1}{2} [ sin ⁡ ( α + β ) - sin ( α − β ) ] cosαsinβ=21[sin(α+β)sin(αβ)]
s i n ⁡ α c o s ⁡ β = 1 2 [ s i n ⁡ ( α + β ) + s i n ( α − β ) ] sin ⁡ α cos ⁡ β = \frac{1}{2} [ sin ⁡ ( α + β ) + sin ( α − β ) ] sinαcosβ=21[sin(α+β)+sin(αβ)]
s i n ⁡ α s i n ⁡ β = − 1 2 [ c o s ⁡ ( α + β ) + c o s ( α − β ) ] sin ⁡ α sin ⁡ β = -\frac{1}{2} [ cos ⁡ ( α + β ) + c o s ( α − β ) ] sinαsinβ=21[cos(α+β)+cos(αβ)]

和差化积公式

s i n ⁡ α + s i n ⁡ β = 2 s i n ⁡ α + β 2 c o s ⁡ α − β 2 sin ⁡ α + sin ⁡ β = 2 sin ⁡ \frac{α + β}{2} cos ⁡ \frac{α - β}{2} sinα+sinβ=2sin2α+βcos2αβ
s i n ⁡ α − s i n ⁡ β = 2 c o s ⁡ α + β 2 s i n ⁡ α − β 2 sin ⁡ α - sin ⁡ β = 2 cos ⁡ \frac{α + β}{2} sin ⁡ \frac{α - β}{2} sinαsinβ=2cos2α+βsin2αβ
c o s ⁡ α + c o s ⁡ β = 2 c o s ⁡ α + β 2 c o s ⁡ α − β 2 cos ⁡ α + cos ⁡ β = 2 cos ⁡ \frac{α + β}{2} cos ⁡ \frac{α - β}{2} cosα+cosβ=2cos2α+βcos2αβ
c o s ⁡ α − c o s ⁡ β = − 2 s i n ⁡ α + β 2 s i n ⁡ α − β 2 cos ⁡ α - cos ⁡ β = -2 sin ⁡ \frac{α + β}{2} sin ⁡ \frac{α - β}{2} cosαcosβ=2sin2α+βsin2αβ

倍角公式

s i n ⁡ 2 α = 2 s i n ⁡ α c o s α sin ⁡ 2 α = 2 sin ⁡ α cos α sin⁡2α=2sinαcosα
c o s ⁡ 2 α = c o s ⁡ 2 α − s i n ⁡ 2 α = 1 − 2 s i n ⁡ 2 α = 2 c o s ⁡ 2 α − 1 cos ⁡ 2 α = cos ⁡^2 α − sin ⁡ ^2 α = 1 − 2 sin ⁡ ^2 α = 2 cos ⁡ ^2 α − 1 cos⁡2α=cos2αsin2α=12sin2α=2cos2α1
s i n ⁡ 3 α = − 4 s i n ⁡ 3 α + 3 s i n ⁡ α sin ⁡ 3 α = − 4 sin ⁡ ^3 α + 3 sin ⁡ α sin⁡3α=4sin3α+3sinα
c o s ⁡ 3 α = 4 c o s ⁡ 3 α − 3 c o s ⁡ α cos ⁡ 3 α = 4 cos ⁡ ^3 α − 3 cos ⁡ α cos⁡3α=4cos3α3cosα
s i n ⁡ 2 α = 1 − c o s ⁡ 2 α 2 sin ⁡ ^2 α = \frac{1 − cos ⁡ 2 α}{2} sin2α=21cos⁡2α
c o s ⁡ 2 α = 1 + c o s ⁡ 2 α 2 cos ⁡ ^2 α = \frac{1 + cos ⁡ 2 α}{2} cos2α=21+cos⁡2α
t a n ⁡ 2 α = 2 t a n ⁡ α 1 − t a n ⁡ 2 α tan ⁡ 2 α = \frac{2 tan ⁡ α}{1 − tan ⁡ ^2 α } tan⁡2α=1tan2α2tanα
c o t ⁡ 2 α = c o t ⁡ 2 α − 1 2 c o t ⁡ α cot ⁡ 2 α = \frac{cot ⁡ ^2 α − 1}{2 cot ⁡ α} cot⁡2α=2cotαcot2α1

半角公式

s i n ⁡ 2 α 2 = 1 − c o s ⁡ α 2 sin ⁡ ^2 \frac{α}{2} = \frac{1 − cos ⁡ α}{2} sin22α=21cosα
c o s ⁡ 2 α 2 = 1 + c o s ⁡ α 2 cos ⁡ ^2 \frac{α}{2} = \frac{1 + cos ⁡ α}{2} cos22α=21+cosα
s i n α 2 = ± 1 − c o s ⁡ α 2 sin \frac{α}{2} = ±\sqrt{\frac{1 - cos ⁡ α}{2}} sin2α=±21cosα
c o s α 2 = ± 1 + c o s ⁡ α 2 cos \frac{α}{2} = ±\sqrt{\frac{1 + cos ⁡ α}{2}} cos2α=±21+cosα
t a n α 2 = 1 − c o s ⁡ α s i n ⁡ α = s i n ⁡ α 1 + c o s ⁡ α = ± 1 − c o s ⁡ α 1 + c o s ⁡ α tan \frac{α}{2} = \frac{1 - cos ⁡ α}{sin ⁡ α} = \frac{sin ⁡ α}{1 + cos ⁡ α } = ±\sqrt{\frac{1 - cos ⁡ α}{1 + cos ⁡ α}} tan2α=sinα1cosα=1+cosαsinα=±1+cosα1cosα
c o t α 2 = s i n ⁡ α 1 − c o s ⁡ α = 1 + c o s ⁡ α s i n ⁡ α = ± 1 + c o s ⁡ α 1 − c o s ⁡ α cot \frac{α}{2} = \frac{sin ⁡ α}{1 - cos ⁡ α} = \frac{1 + cos ⁡ α }{sin ⁡ α } = ±\sqrt{\frac{1 + cos ⁡ α}{1 - cos ⁡ α}} cot2α=1cosαsinα=sinα1+cosα=±1cosα1+cosα

万能公式

s i n α = 2 t a n ⁡ α 2 1 + t a n 2 ⁡ α 2 sin α = \frac{2tan ⁡\frac{α}{2}}{1 + tan ^2 ⁡\frac{α}{2}} sinα=1+tan22α2tan2α
c o s α = 1 − t a n 2 ⁡ α 2 1 + t a n 2 ⁡ α 2 cos α = \frac{1 - tan ^2 ⁡\frac{α}{2}}{1 + tan ^2 ⁡\frac{α}{2}} cosα=1+tan22α1tan22α

其他公式

1 + s i n ⁡ α = ( s i n ⁡ α 2 + c o s ⁡ α 2 ) 2 1 + sin ⁡ α = ( sin ⁡\frac{α}{2} + cos ⁡\frac{α}{2}) ^2 1+sinα=(sin2α+cos2α)2
1 − s i n ⁡ α = ( s i n ⁡ α 2 − c o s ⁡ α 2 ) 2 1 - sin ⁡ α = ( sin ⁡\frac{α}{2} - cos ⁡\frac{α}{2}) ^2 1sinα=(sin2αcos2α)2

反三角函数恒等式

a r c s i n ⁡ x + a r c c o s ⁡ x = ⁡ π 2 arcsin ⁡ x + arccos ⁡ x = ⁡\frac{π}{2} arcsinx+arccosx=2π
a r c t a n ⁡ x + a r c c o t ⁡ x = ⁡ π 2 arctan ⁡ x + arccot ⁡ x = ⁡\frac{π}{2} arctanx+arccotx=2π
s i n ⁡ ( a r c c o s ⁡ x ) = 1 − x 2 sin ⁡ ( arccos ⁡ x ) = \sqrt{1 − x ^2} sin(arccosx)=1x2
c o s ⁡ ( a r c s i n ⁡ x ) = 1 − x 2 cos ⁡ ( arcsin ⁡ x ) = \sqrt{1 − x ^2} cos(arcsinx)=1x2
s i n ⁡ ( a r c s i n ⁡ x ) = x sin ⁡ ( arcsin ⁡ x ) = x sin(arcsinx)=x
a r c s i n ⁡ ( s i n ⁡ x ) = x arcsin ⁡ ( sin ⁡ x ) = x arcsin(sinx)=x
c o s ⁡ ( a r c c o s ⁡ x ) = x cos ⁡ ( arccos ⁡ x ) = x cos(arccosx)=x
a r c c o s ⁡ ( c o s ⁡ x ) = x arccos ⁡ ( cos ⁡ x ) = x arccos(cosx)=x
a r c c o s ⁡ ( − x ) = π − a r c c o s ⁡ x arccos ⁡ ( − x ) = π − arccos ⁡ x arccos(x)=πarccosx




三角函数

定义式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/283530.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI Agent目前应用落地有哪些局限性?

谈到AI Agent目前应用落地有哪些局限性,还是要从概念、应用入手。 谈 到 AI Agent, 很多人都认为它是LLM的产物,了解 AI Agent 的人应该知道,Agent 概念并不是当今的产物,而是伴随人工智能而出现的智能实体概念不断进…

Qt 利用共享内存实现一次只能启动一个程序(单实例运行)

Qt 利用共享内存实现一次只能启动一个程序 文章目录 Qt 利用共享内存实现一次只能启动一个程序摘要利用共享内存实现一次只能启动一个程序示例代码 关键字: Qt、 unique、 单一、 QSharedMemory、 共享内存 摘要 今天接着在公司搞我的屎山代码,按照…

智能合约 之 部署ERC-20

Remix介绍 Remix是一个由以太坊社区开发的在线集成开发环境(IDE),旨在帮助开发者编写、测试和部署以太坊智能合约。它提供了一个简单易用的界面,使得开发者可以在浏览器中直接进行智能合约的开发,而无需安装任何额外的…

鸿蒙Harmony应用开发—ArkTS(@Prop装饰器:父子单向同步)

Prop装饰的变量可以和父组件建立单向的同步关系。Prop装饰的变量是可变的,但是变化不会同步回其父组件。 说明: 从API version 9开始,该装饰器支持在ArkTS卡片中使用。 概述 Prop装饰的变量和父组件建立单向的同步关系: Prop变量…

JSONP 实现跨域请求案例

后端使用 express 搭建,案例代码如下: const express require(express)const app express() const PORT 3000app.get(/data, (req, res) > {const jsonData {name: Alan,age: 666,city: GD}const callback req.query.callback // 获取前端中的回…

MNN 执行推理(九)

系列文章目录 MNN createFromBuffer(一) MNN createRuntime(二) MNN createSession 之 Schedule(三) MNN createSession 之创建流水线后端(四) MNN Session 之维度计算(五…

ROS2从入门到精通0-3:VSCode 搭建 ROS2 工程环境

目录 0 专栏介绍1 Ubuntu下安装VSCode1.1 基本安装1.2 将VSCode添加到侧边栏 2 VSCode集成相关插件3 VSCode运行ROS2环境步骤3.1 安装编译依赖项3.2 创建工作空间和源码空间3.3 启动VSCode与配置 4 测试工程环境4.1 C版本4.2 Python版本 0 专栏介绍 本专栏旨在通过对ROS2的系统…

【每日一问】IOS手机上Charles证书过期怎么办?

1、如何查看证书是否过期? 设置>通用>VPN与设备管理 2、在Charles中重置证书 步骤1:重置证书 Help>SSL Proxying>Reset Charles Root Certificate… 步骤2:在浏览器中,下载证书 首先,手机连上代理,然…

JavaScript 权威指南第七版(GPT 重译)(二)

第四章:表达式和运算符 本章记录了 JavaScript 表达式以及构建许多这些表达式的运算符。表达式 是 JavaScript 的短语,可以 评估 以产生一个值。在程序中直接嵌入的常量是一种非常简单的表达式。变量名也是一个简单表达式,它评估为分配给该变…

阿里云2核4G云服务器ECS和轻量应用服务器价格表

阿里云2核4G服务器租用优惠价格,轻量2核4G服务器165元一年、u1服务器2核4G5M带宽199元一年、云服务器e实例30元3个月,活动链接 aliyunfuwuqi.com/go/aliyun 活动链接如下图: 阿里云2核4G服务器优惠价格 轻量应用服务器2核2G4M带宽、60GB高效…

面试算法-82-不同路径

题目 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路径? …

律师如何看待项目管理中的技术风险

大家好,我是不会魔法的兔子,是一枚北京的执业律师,创建[项目管理者的法小院儿],持续从法律的角度分享项目管理中的风险问题及预防,让项目管理者能够提早发现与解决项目执行过程中的风险,同时欢迎大家一起交…

【C语言】数据在内存中的存储(包含大小端字节序问题)~

一、前言 我们在刚开始学习C语言的时候,就接触到了很多数据的不同类型。我们也知道,数据是存储在一块内存空间的,且我们只知道数据的类型决定着,该数据在内存中所占内存空间的大小,且超过一个字节的数据在内存中存储的…

手撕算法-接雨水

描述 分析 i位置能积累的雨水量,等于其左右两边最大高度的最小值。为了能获取i位置左右两边的最大高度。使用动态规划。两个dp数组: leftMaxrightMax 其中 leftMax[i] 代表i位置左边的最大高度rightMax[i] 代表i位置右边的最大高度 初始状态&#x…

Nacos源码流程图

1.Nacos1.x版本服务注册与发现源码 流程图地址:https://www.processon.com/view/link/634695eb260d7157a7bc6adb 2.Nacos2.x版本服务注册与发现源码 流程图地址:https://www.processon.com/view/link/634695fb260d7157a7bc6ae0 3.Nacos2.x版本GRPC…

Visual Studio 2013 - 高亮设置括号匹配 (方括号)

Visual Studio 2013 - 高亮设置括号匹配 [方括号] 1. 高亮设置 括号匹配 (方括号)References 1. 高亮设置 括号匹配 (方括号) 工具 -> 选项… -> 环境 -> 字体和颜色 References [1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/

React - 实现菜单栏滚动

简介 本文将会基于react实现滚动菜单栏功能。 技术实现 实现效果 点击菜单,内容区域会自动滚动到对应卡片。内容区域滑动,指定菜单栏会被选中。 ScrollMenu.js import {useRef, useState} from "react"; import ./ScrollMenu.css;export co…

网络原理(5)——IP协议(网络层)

目录 一、IP协议报头介绍 1、4位版本 2、4位首部长度 3、8位服务器类型 4、16位总长度 5、16位标识位 6、3位标志位 7、13位偏移量 8、8位生存空间 9、8位协议 10、16位首部检验和 11、32位源IP地址 12、32位目的IP地址 二、IP协议如何管理地址? 1、动…

python 空间距离计算

目录 python 空间距离计算 已知两点,画三角形 批量矩阵计算 python 空间距离计算 要在空间中找到一个点,使其位于点 b 和 c 之间的连线上,并且与点 b 的距离等于点 a 到点 b 的距离的2倍。 import numpy as npif __name__ __main__:a …

链路聚合的应用场景

STP:聚合后计算 物理端口的速率叠加 链路聚合、端口聚合,链路捆绑 把多根链路逻辑捆绑在一起,当STP进行拓扑计算时此时会按照聚合后链路计算链路聚合物理链路速率的叠加最多可以用8个链路同时捆绑 1.提升带宽 2.增加网络的高可用性&#…