目录
斐波那契数列模型
1. 第N个泰波那契数
2.使用最小花费爬楼梯
3.解码方法
学过算法的应该知道,动态规划一直都是一个非常难的模块,无论是状态转移方程的定义还是dp表的填表,都非常难找到思路。在这个算法的支线专题中我会结合很多力扣题型,由简单到复杂,带大家深度剖析动态规划类的题型,欢迎大家关注啊。
顺序:
题目链接-》算法思路-》代码呈现
斐波那契数列模型
动态规划类题目解题步骤:
- 依据题目进行状态表示(dp[i]的含义)
- 写出状态转移方程(类似于dp[i]=dp[i-1]+dp[i-2])
- 为防止填表时数组越界,对dp表进行初始化(dp[0]=dp[1]=1)
- 搞清楚填表顺序(从前往后或者从后往前)
- 利用dp表返回问题答案
1. 第N个泰波那契数
题目链接:
https://leetcode.cn/problems/n-th-tribonacci-number/description/
算法思路:
代码呈现:
class Solution {public int tribonacci(int n) {if(n==0){return 0;}if(n==1||n==2){return 1;}int[] dp=new int[n+1];dp[0]=0;dp[1]=1;dp[2]=1;for(int i=3;i<=n;i++){dp[i]=dp[i-1]+dp[i-2]+dp[i-3];}return dp[n];}
}
2.使用最小花费爬楼梯
题目链接:
https://leetcode.cn/problems/min-cost-climbing-stairs/description/
算法思路:
- 先到达 i - 1 的位置,然后⽀付 cost[i - 1] ,接下来⾛⼀步⾛到 i 位置: dp[i - 1] + csot[i - 1] ;
- 先到达 i - 2 的位置,然后⽀付 cost[i - 2] ,接下来⾛⼀步⾛到 i 位置: dp[i - 2] + csot[i - 2] 。
代码呈现:
class Solution {public int minCostClimbingStairs(int[] cost) {int size=cost.length;if(size==2) return Math.min(cost[0],cost[1]);int[] dp=new int[size+1];dp[0]=0;dp[1]=0;dp[2]=Math.min(cost[0],cost[1]);for(int i=3;i<=size;i++){dp[i]=Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);}return dp[size];}
}
3.解码方法
题目链接:
https://leetcode.cn/problems/decode-ways/
算法思路:
- 让 i 位置上的数与 i - 1 位置上的数结合在⼀起,解码成⼀个字⺟,也存在「解码成功」和「解码失败」两种情况:
i. 解码成功:当结合的数在 [10, 26] 之间的时候,说明 [i - 1, i] 两个位置是可以解码成功的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 2 ] 区间上的解码⽅法,原因同上。此时 dp[i] = dp[i - 2] ;
ii. 解码失败:当结合的数在 [0, 9] 和 [27 , 99] 之间的时候,说明两个位置结合后解码失败(这⾥⼀定要注意 00 01 02 03 04 ...... 这⼏种情况),那么此时 [0, i] 区间上的解码⽅法就不存在了,原因依旧同上。此时 dp[i] = 0 。
- 让 i 位置上的数单独解码成⼀个字⺟,就存在「解码成功」和「解码失败」两种情况:
i. 解码成功:当 i 位置上的数在 [1, 9] 之间的时候,说明 i 位置上的数是可以单独解 码的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 1] 区间上的解码⽅ 法。因为 [0, i - 1] 区间上的所有解码结果,后⾯填上⼀个 i 位置解码后的字⺟就 可以了。此时 dp[i] = dp[i - 1] ;
ii. 解码失败:当 i 位置上的数是 0 的时候,说明 i 位置上的数是不能单独解码的,那么此时 [0, i] 区间上不存在解码⽅法。因为 i 位置如果单独参与解码,但是解码失败了,那么前⾯做的努⼒就全部⽩费了。此时 dp[i] = 0 。
代码呈现:
class Solution {public int numDecodings(String s) {char[] arr=s.toCharArray();int n=arr.length;int[] dp=new int[n+1];dp[0]=1;if(arr[0]=='0') dp[1]=0;else dp[1]=1;if(n==1){return dp[1];}for(int i=2;i<n+1;i++){if(arr[i-1]!='0'){dp[i]+=dp[i-1];}if(((arr[i-2]-'0')*10+(arr[i-1]-'0'))<=26&&((arr[i-2]-'0')*10+(arr[i-1]-'0'))>=10){dp[i]+=dp[i-2];}}return dp[n];}
}