文章目录
- 项目介绍
- 1 短信登录
- 2 商户查询缓存
- 2.1 什么是缓存
- 2.1.1 缓存的应用场景
- 2.1.2 为什么要使用缓存
- 2.1.3 Web应用中缓存的作用
- 2.1.4 Web应用中缓存的成本
- 附:缓存封装工具类
🙊 前言:本文章为瑞_系列专栏之《Redis》的实战篇的商户查询缓存章节的什么是缓存小节。由于博主是从B站黑马程序员的《Redis》学习其相关知识,所以本系列专栏主要是针对该课程进行笔记总结和拓展,文中的部分原理及图解等也是来源于黑马提供的资料,特此注明。本文仅供大家交流、学习及研究使用,禁止用于商业用途,违者必究!
- 主机操作系统:Windows10
- VMware版本: VMware Workstation 16.2.4
- Linux版本:CentOS 7 64位
- 远程连接工具:MobaXterm_Personal_23.2
- Redis版本:redis-6.2.6.tar.gz
- Redis客户端:resp-2022.2.0.0
- MySQL版本:8.0.29(5.7+均可)
- Navicat Premium:15.0.28
- JDK:1.8
相关链接:《瑞_VMware虚拟机安装Linux纯净版(含卸载,图文超详细)》
相关链接:《瑞_Redis_短信登录》
项目介绍
本文基于B站黑马程序员的《黑马点评》项目进行学习笔记总结和拓展,项目的相关资源和课程视频可以到B站获取。
博主提供的该项目的相关资源的某度网盘链接:https://pan.baidu.com/s/1N-yr86yTRi3LbQdAL7prEQ?pwd=q0ry
本项目具有以下功能点,本文为《商户查询缓存》篇的什么是缓存小节
-
短信登录
这一块我们会使用redis共享session来实现 -
商户查询缓存
通过本章节,我们会理解缓存击穿,缓存穿透,缓存雪崩等问题,让小伙伴的对于这些概念的理解不仅仅是停留在概念上,更是能在代码中看到对应的内容 -
优惠卷秒杀
通过本章节,我们可以学会Redis的计数器功能, 结合Lua完成高性能的redis操作,同时学会Redis分布式锁的原理,包括Redis的三种消息队列 -
附近的商户
我们利用Redis的GEOHash来完成对于地理坐标的操作 -
UV统计
主要是使用Redis来完成统计功能 -
用户签到
使用Redis的BitMap数据统计功能 -
好友关注
基于Set集合的关注、取消关注,共同关注等等功能,这一块知识咱们之前就讲过,这次我们在项目中来使用一下 -
达人探店
基于List来完成点赞列表的操作,同时基于SortedSet来完成点赞的排行榜功能
由于该项目主要是为了学习Redis,所以不会设计为微服务架构,简化代码复杂度,所以采用前后端分离的单体架构
说明
手机或者app端发起请求,请求我们的nginx服务器,nginx基于七层模型走的事HTTP协议,可以实现基于Lua直接绕开tomcat访问redis,也可以作为静态资源服务器,轻松扛下上万并发, 负载均衡到下游tomcat服务器,打散流量,我们都知道一台4核8G的tomcat,在优化和处理简单业务的加持下,大不了就处理1000左右的并发, 经过nginx的负载均衡分流后,利用集群支撑起整个项目,同时nginx在部署了前端项目后,更是可以做到动静分离,进一步降低tomcat服务的压力,这些功能都得靠nginx起作用,所以nginx是整个项目中重要的一环。
在 tomcat 支撑起并发流量后,我们如果让 tomcat 直接去访问 Mysql ,根据经验 Mysql 企业级服务器只要上点并发,一般是16或32 核心cpu,32 或64G内存,像企业级mysql加上固态硬盘能够支撑的并发,大概就是4000起~7000左右,上万并发, 瞬间就会让Mysql服务器的cpu,硬盘全部打满,容易崩溃,所以我们在高并发场景下,会选择使用mysql集群,同时为了进一步降低Mysql的压力,同时增加访问的性能,我们也会加入Redis,同时使用Redis集群使得Redis对外提供更好的服务。
1 短信登录
瑞:见《瑞_Redis_短信登录》
2 商户查询缓存
本章节基于hm-dianping【1.3Redis代替session的业务流程】
的代码,需要请自取
链接:https://pan.baidu.com/s/1DomlH_sXyAkrciXk8-bWww?pwd=z6lu
提取码:z6lu
2.1 什么是缓存
缓存就是数据交换的缓冲区(称作Cache [ kæʃ ] ),是存贮数据的临时地方,一般读写性能较高。
2.1.1 缓存的应用场景
缓存的应用场景:浏览器缓存、应用层缓存(如Redis)、数据库缓存(如:索引)、CPU多级缓存、磁盘缓存
-
浏览器缓存:主要是存在于浏览器端的缓存
-
应用层缓存:可以分为tomcat本地缓存,比如之前提到的map,或者是使用redis作为缓存
-
数据库缓存:在数据库中有一片空间是 buffer pool,增改查数据都会先加载到mysql的缓存中
-
CPU缓存:当代计算机最大的问题是 cpu性能提升了,但内存读写速度没有跟上,所以为了适应当下的情况,增加了cpu的L1,L2,L3级的缓存
CPU多级缓存的诞生:在计算机中,主要的构造为CPU、内存、磁盘。由于CPU的运算能力随着科技的发展,其计算能力已经远远的超过内存和磁盘的读写数据的能力,但是CPU所做的任何运算都需要从内存或者磁盘中读到数据,再放到自己的寄存器里,才可以进行运算。正是由于这种数据读写的能力远远低于CPU的运算能力,导致计算机性能受到瓶颈。所以人们在CPU的内部添加了缓存,即CPU会把经常需要读写的数据放入CPU缓存中,当进行高速运算的时候,就不需要每次都去内存或磁盘中读取数据再运算,而是直接从缓存中获取数据直接运算,这样就可以充分释放CPU的运算能力。
缓存的常见使用示例:
例1:Static final ConcurrentHashMap<K,V> map = new ConcurrentHashMap<>(); 本地用于高并发例2:static final Cache<K,V> USER_CACHE = CacheBuilder.newBuilder().build(); 用于redis等缓存例3:Static final Map<K,V> map = new HashMap(); 本地缓存
由于其被Static修饰,所以随着类的加载而被加载到内存之中,作为本地缓存,由于其又被 final 修饰,所以其引用 (例3:map) 和对象 (例3:new HashMap()) 之间的关系是固定的,不能改变,因此不用担心赋值(=)导致缓存失效。
2.1.2 为什么要使用缓存
一句话:因为速度快,好用
缓存数据存储于代码中,而代码运行在内存中,内存的读写性能远高于磁盘,缓存可以大大降低用户访问并发量带来的服务器读写压力
实际开发过程中,企业的数据量,少则几十万,多则几千万,这么大的数据量,如果没有缓存来作为"避震器",系统是几乎是撑不住的,所以企业会大量运用到缓存技术。
2.1.3 Web应用中缓存的作用
缓存的作用:
1️⃣ 降低后端负载:请求先进入缓存中查找数据,若缓存中不存在再将请求向数据库发送,大大降低后端数据库压力。
2️⃣ 提高读写效率,降低响应时间。
2.1.4 Web应用中缓存的成本
缓存的成本:
1️⃣ 数据一致性成本:数据本身只保存在数据库,现在将数据缓存了一份放到了内存中(如Redis),如果数据库中的数据发生了变化而缓存中的数据仍然是旧数据,由于请求先进入缓存中查找数据,就会造成数据的不一致性。
2️⃣ 代码维护成本:由于要保证数据一致性,自然会增加业务编码,且会出现缓存穿透、雪崩、击穿等问题,会大幅度提高代码复杂度。
3️⃣ 运维成本:为了避免缓存雪崩或缓存的高可用,需要搭建成缓存集群模式,提高了运维成本。
瑞:后续内容请关注瑞_系列专栏之《Redis》
附:缓存封装工具类
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import org.springframework.util.CollectionUtils;import javax.annotation.Resource;
import java.util.Collection;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;/*** 缓存工具类* <br>* Component / 实现 bean 的注入*/
@Component
@SuppressWarnings("all")
public final class RedisUtil {@Resourceprivate RedisTemplate<String, Object> redisTemplate;/*** 时间有效期 左区间*/private final static int TIME_EXPIRE_LEFT = 300;/*** 时间有效期 右区间*/private final static int TIME_EXPIRE_RIGHT = 3000;// =============================common============================/*** 指定缓存失效时间* <br>* 防止缓存雪崩。* 过期时间 = 基础时间 + 随机时间,让缓存慢慢过期,避免瞬间全部过期,对 DB 产生过大压力** @param key 键* @param time 时间(秒)*/public boolean expire(String key, long time) {try {if (time > 0) {redisTemplate.expire(key, time + MathUtil.getIntRandom(TIME_EXPIRE_LEFT, TIME_EXPIRE_RIGHT), TimeUnit.SECONDS);}return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 根据key 获取过期时间** @param key 键 不能为null* @return 时间(秒) 返回0代表为永久有效*/public long getExpire(String key) {return redisTemplate.getExpire(key, TimeUnit.SECONDS);}/*** 判断key是否存在** @param key 键* @return true 存在 false不存在*/public boolean hasKey(String key) {try {boolean result = redisTemplate.hasKey(key);return result;} catch (Exception e) {return false;}}/*** 删除缓存** @param key 可变长参数,可以不传,但是不对无参进行操作*/public void del(String... key) {if (key != null && key.length > 0) {if (key.length == 1) {redisTemplate.delete(key[0]);} else {redisTemplate.delete((Collection<String>) CollectionUtils.arrayToList(key));}}}// ============================String=============================/*** 普通缓存获取** @param key 键* @return 值*/public Object get(String key) {return key == null ? null : redisTemplate.opsForValue().get(key);}/*** 普通缓存放入** @param key 键* @param value 值* @return true成功 false失败*/public boolean set(String key, Object value) {try {redisTemplate.opsForValue().set(key, value);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 普通缓存放入并设置时间** @param key 键* @param value 值* @param time 时间(秒) time要大于0 如果time小于等于0 将设置无限期* @return true成功 false 失败*/public boolean set(String key, Object value, long time) {try {if (time > 0) {redisTemplate.opsForValue().set(key, value, time+ MathUtil.getIntRandom(60, 300), TimeUnit.SECONDS);} else {set(key, value);}return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 递增** @param key 键* @param delta 要增加几(大于0)*/public long incr(String key, long delta) {if (delta < 0) {throw new RuntimeException("递增因子必须大于0");}return redisTemplate.opsForValue().increment(key, delta);}/*** 递减** @param key 键* @param delta 要减少几(小于0)*/public long decr(String key, long delta) {if (delta < 0) {throw new RuntimeException("递减因子必须大于0");}return redisTemplate.opsForValue().increment(key, -delta);}// ================================Map=================================/*** HashGet** @param key 键 不能为null* @param item 项 不能为null*/public Object hget(String key, String item) {return redisTemplate.opsForHash().get(key, item);}/*** 获取hashKey对应的所有键值** @param key 键* @return 对应的多个键值*/public Map<Object, Object> hmget(String key) {return redisTemplate.opsForHash().entries(key);}/*** HashSet** @param key 键* @param map 对应多个键值*/public boolean hmset(String key, Map<String, Object> map) {try {redisTemplate.opsForHash().putAll(key, map);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** HashSet 并设置时间** @param key 键* @param map 对应多个键值* @param time 时间(秒)* @return true成功 false失败*/public boolean hmset(String key, Map<String, Object> map, long time) {try {redisTemplate.opsForHash().putAll(key, map);if (time > 0) {expire(key, time);}return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 向一张hash表中放入数据,如果不存在将创建** @param key 键* @param item 项* @param value 值* @return true 成功 false失败*/public boolean hset(String key, String item, Object value) {try {redisTemplate.opsForHash().put(key, item, value);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 向一张hash表中放入数据,如果不存在将创建** @param key 键* @param item 项* @param value 值* @param time 时间(秒) 注意:如果已存在的hash表有时间,这里将会替换原有的时间* @return true 成功 false失败*/public boolean hset(String key, String item, Object value, long time) {try {redisTemplate.opsForHash().put(key, item, value);if (time > 0) {expire(key, time);}return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 删除hash表中的值** @param key 键 不能为null* @param item 项 可以使多个 不能为null*/public void hdel(String key, Object... item) {redisTemplate.opsForHash().delete(key, item);}/*** 判断hash表中是否有该项的值** @param key 键 不能为null* @param item 项 不能为null* @return true 存在 false不存在*/public boolean hHasKey(String key, String item) {return redisTemplate.opsForHash().hasKey(key, item);}/*** hash递增 如果不存在,就会创建一个 并把新增后的值返回** @param key 键* @param item 项* @param by 要增加几(大于0)*/public double hincr(String key, String item, double by) {return redisTemplate.opsForHash().increment(key, item, by);}/*** hash递减** @param key 键* @param item 项* @param by 要减少记(小于0)*/public double hdecr(String key, String item, double by) {return redisTemplate.opsForHash().increment(key, item, -by);}// ============================set=============================/*** 根据key获取Set中的所有值** @param key 键*/public Set<Object> sGet(String key) {try {return redisTemplate.opsForSet().members(key);} catch (Exception e) {e.printStackTrace();return null;}}/*** 根据value从一个set中查询,是否存在** @param key 键* @param value 值* @return true 存在 false不存在*/public boolean sHasKey(String key, Object value) {try {return redisTemplate.opsForSet().isMember(key, value);} catch (Exception e) {e.printStackTrace();return false;}}/*** 将数据放入set缓存** @param key 键* @param values 值 可以是多个* @return 成功个数*/public long sSet(String key, Object... values) {try {return redisTemplate.opsForSet().add(key, values);} catch (Exception e) {e.printStackTrace();return 0;}}/*** 将set数据放入缓存** @param key 键* @param time 时间(秒)* @param values 值 可以是多个* @return 成功个数*/public long sSetAndTime(String key, long time, Object... values) {try {Long count = redisTemplate.opsForSet().add(key, values);if (time > 0)expire(key, time);return count;} catch (Exception e) {e.printStackTrace();return 0;}}/*** 获取set缓存的长度** @param key 键*/public long sGetSetSize(String key) {try {return redisTemplate.opsForSet().size(key);} catch (Exception e) {e.printStackTrace();return 0;}}/*** 移除值为value的** @param key 键* @param values 值 可以是多个* @return 移除的个数*/public long setRemove(String key, Object... values) {try {Long count = redisTemplate.opsForSet().remove(key, values);return count;} catch (Exception e) {e.printStackTrace();return 0;}}// ===============================list=================================/*** 获取list缓存的内容** @param key 键* @param start 开始* @param end 结束 0 到 -1代表所有值*/public List<Object> lGet(String key, long start, long end) {try {return redisTemplate.opsForList().range(key, start, end);} catch (Exception e) {e.printStackTrace();return null;}}/*** 获取list缓存的长度** @param key 键*/public long lGetListSize(String key) {try {return redisTemplate.opsForList().size(key);} catch (Exception e) {e.printStackTrace();return 0;}}/*** 通过索引 获取list中的值** @param key 键* @param index 索引 index>=0时, 0 表头,1 第二个元素,依次类推;index<0时,-1,表尾,-2倒数第二个元素,依次类推*/public Object lGetIndex(String key, long index) {try {return redisTemplate.opsForList().index(key, index);} catch (Exception e) {e.printStackTrace();return null;}}/*** 将list放入缓存** @param key 键* @param value 值*/public boolean lSet(String key, Object value) {try {redisTemplate.opsForList().rightPush(key, value);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 将list放入缓存** @param key 键* @param value 值* @param time 时间(秒)*/public boolean lSet(String key, Object value, long time) {try {redisTemplate.opsForList().rightPush(key, value);if (time > 0)expire(key, time);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 将list放入缓存** @param key 键* @param value 值* @return*/public boolean lSet(String key, List<Object> value) {try {redisTemplate.opsForList().rightPushAll(key, value);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 将list放入缓存** @param key 键* @param value 值* @param time 时间(秒)* @return*/public boolean lSet(String key, List<Object> value, long time) {try {redisTemplate.opsForList().rightPushAll(key, value);if (time > 0)expire(key, time);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 根据索引修改list中的某条数据** @param key 键* @param index 索引* @param value 值* @return*/public boolean lUpdateIndex(String key, long index, Object value) {try {redisTemplate.opsForList().set(key, index, value);return true;} catch (Exception e) {e.printStackTrace();return false;}}/*** 移除N个值为value** @param key 键* @param count 移除多少个* @param value 值* @return 移除的个数*/public long lRemove(String key, long count, Object value) {try {Long remove = redisTemplate.opsForList().remove(key, count, value);return remove;} catch (Exception e) {e.printStackTrace();return 0;}}}
如果觉得这篇文章对您有所帮助的话,请动动小手点波关注💗,你的点赞👍收藏⭐️转发🔗评论📝都是对博主最好的支持~