TransUNet论文笔记

论文:TransUNet:Transformers Make Strong Encoders for Medical Image Segmentation

目录

Abstract

Introduction

Related Works 

各种研究试图将自注意机制集成到CNN中。

Transformer

Method

Transformer as Encoder

图像序列化

Patch Embedding

TransUNet

CNN-Transformer Hybrid as Encoder

级联上采样

Experiments and Discussion

数据集和评估

消融实验 

skip-connection的消融实验

输入分辨率的消融实验

序列长度和补丁大小的消融实验

模型缩放的消融实验

可视化

Conclusion 


 

Abstract

在深度学习医学图像分割领域,UNet结构一直以来都牢牢占据着主导地位,并取得了巨大的成功。然而,由于卷积操作的固有局部性,U-Net通常在远程依赖方面表现出局限性。Transformer是为序列到序列的预测而设计的,已经成为具有固有全局自注意力机制的替代架构,但由于缺乏低级细节,可能导致定位能力有限。

在本文中,作者提出了TransUNet,它兼有transformer和U-Net的优点,作为医学图像分割的强大替代方案。一方面,Transformer对来自卷积神经网络(CNN)特征映射的标记化图像patches进行编码,作为提取全局上下文的输入序列。另一方面,解码器对编码特征进行采样,然后将其与高分辨率CNN特征图相结合,以实现精确的定位。

Introduction

卷积网络的兴起,促进了图像领域的进步。并且广泛应用于图像分类任务,但是在一些特定场景,如生物医学图像处理领域,通常是需要像素级的分类任务,也就是图像分割任务。

生物医学图像的特点:

1、图像语义较为简单,结构较为固定;

2、数据量少;

3、可解释性重要。

Unet是一个包含4层下采样、4层上采样以及一个类似跳跃连接结构的全卷积网络。数据先经过传统的特征提取路径来获取语义信息,将图像压缩为由特征组成的特征图,然后再经过特征复原路径来精准定位,将提取的特征解码为与原始图像尺寸一样的分割后的预测图像。

6721bdddac6a429c9670e820c2285254.png

Encoder左半部分,由两个3x3的卷积层(RELU)再加上一个2x2的max pooling层组成一个下采样的模块;

Decoder右半部分,由一个上采样的卷积层(去卷积层)+特征拼接concat+两个3x3的卷积层(ReLU)反复构成;这种通过通道数的拼接,可以得到更多的特征。

Related Works 

各种研究试图将自注意机制集成到CNN中。

卡内基梅隆大学的王小龙等人设计了一个非局部算子,可插入多个中间卷积层。 

Schlemper等人在编码器-解码器u型架构的基础上,提出了集成到跳过连接中的附加注意门模块。

与这些方法不同的是,作者使用了transformer来嵌入全局自注意力机制。

Transformer

Transformer被提出用于机器翻译,并在许多NLP任务中建立了最先进的状态。为了使Transformer也适用于计算机视觉任务,进行了一些修改。

Parmar等对每个查询像素仅在局部邻域应用自注意,而不是全局应用。

Child等人提出了稀疏transformer,它采用可扩展的近似全局自注意力。

最近,Vision Transformer (ViT)通过直接将具有全局自注意力的Transformer应用于全尺寸图像,实现了最先进的ImageNet分类。据我们所知,TransUNet是第一个基于transform的医学图像分割框架,它建立在非常成功的ViT之上。

Method

Transformer as Encoder

图像序列化

首先通过将输入eq?X属于eq?R%5E%7BH*W*C%7D,给定图像其空间分辨率为H*W,通道数为C。用eq?P%5Ctimes%20P大小的切片去分割图片可以得到N个切片(N=eq?%5Cfrac%7BH%5Ccdot%20W%7D%7BP%5E%7B2%7D%7D是图像切片的数量,即输入序列长度),那么每个切片的尺寸就是P∗P∗C,形成二维的序列,转化为向量,将N个切片重组后向量连接就可以得到𝑁𝑃𝑃𝐶(总的输入变换)的二维矩阵。

1ebab9731a1b4dd0a5240b3f0588e504.png

 

Patch Embedding

需要注意,作者最后进行Patch Embeding的输入并不是图像序列化,而是CNN提取到的特征;

切片𝑥𝑝x_p通过线性投影( linear projection)映射到D维的嵌入空间,为了对patch空间信息进行编码,我们学习特定的位置嵌入,并将其添加到patch嵌入中以保留位置信息,方法如下:

eq?z_%7B0%7D%3D%5Bx_%7Bp%7D%5E%7B1%7D%3Bx_%7Bp%7D%5E%7B2%7D%3B...%3Bx_%7Bp%7D%5E%7BN%7DE%5D+E_%7Bpos%7D

其中eq?E为嵌入投影, eq?E_%7Bpos%7D为位置投影

0fc24c7afba7463ca6209135e197df61.png

 

Tranformer编码器由L层多头自注意(MSA)和多层感知器(MLP)块(等式)组成

51b2f1946dc94d1082cb0f512ad2f6ad.png

eq?z_%7Bl%7D%5E%7B%7B%7D%27%7D%3DMSA%28LN%28z_%7Bl-1%7D%29%29+z_%7Bl-1%7D

eq?z_%7Bl%7D%3DMLP%28LN%28z_%7Bl%7D%5E%7B%7B%7D%27%7D%29%29+z_%7Bl%7D%5E%7B%7B%7D%27%7D%2C

式中LN(·)为层归一化算子,eq?z_%7Bl%7D为编码后的图像表示。

TransUNet

transformer作为encoder部分,对transformer后的编码特征是eq?%5Cfrac%7BH%5Ccdot%20W%7D%7BP%5E%7B2%7D%7D*D,为了恢复空间信息,将eq?%5Cfrac%7BH%5Ccdot%20W%7D%7BP%5E%7B2%7D%7D*D恢复至eq?%5Cfrac%7BH%7D%7BP%7D*%5Cfrac%7BW%7D%7BP%7D*D,然后使用U-Net的decoder部分,上采样恢复分辨率至eq?H*W。虽然也能产生合理的结果,但结果比较粗糙,缺少高分辨率的细节信息。也就是说此时的结构不是transformer的最佳应用,因为通常eq?%5Cfrac%7BH%7D%7BP%7D*%5Cfrac%7BW%7D%7BP%7Deq?H*W小很多,分辨率在恢复至eq?H*W过程中,不可避免导致定位信息的损失。为了弥补这种定位细节信息的损失,作者继续提出了CNN-Transformer的混合结构。

CNN-Transformer Hybrid as Encoder

TransUNet不是使用纯Transformer作为编码器,而是使用CNN-Transformer混合模型,其中CNN首先用作特征提取器,为输入生成特征映射。Patch embedding是对CNN feature map中提取的1 × 1的Patch进行嵌入,而不是对原始图像进行嵌入。

0634afa313bc4007b883a92e548cd42e.png

我们选择这种设计是因为:

1)它允许我们在解码路径中利用中间高分辨率CNN特征图;

2)我们发现混合CNN-Transformer编码器比简单地使用纯Transformer作为编码器性能更好。

级联上采样

作者引入了一个级联上采样器(CUP),它由多个上采样步骤组成,用于解码隐藏特征以输出最终的分割掩码。在将隐藏特征eq?z_%7BL%7D%5Cmathbb%7BC%7DR%5E%7B%5Cfrac%7BHW%7D%7BP%5E%7B2%7D%7D*D%7D的序列重塑为eq?%5Cfrac%7BH%7D%7BP%7D*%5Cfrac%7BW%7D%7BP%7D*D的形状后,我们通过级联多个上采样块来实例化CUP,以达到从eq?%5Cfrac%7BH%7D%7BP%7D*%5Cfrac%7BW%7D%7BP%7Deq?H*W的全分辨率,其中每个块依次由上采样算子、3×3卷积层和ReLU层组成。

a334689ad71a4486beaa4685db4c75c8.png

整体TransUNet框图如下图所示

58f517ae92174203be9000144120c81a.png

Experiments and Discussion

数据集和评估

Synapse multi-organ segmentation dataset(Synapse多器官分割数据集)腹部CT扫描 (30次腹部CT扫描 总共有3779张轴向增强腹部临床CT图像)报告了8个腹部器官的平均Dice和平均豪斯多夫距离(HD),随机分为18个训练病例(2212个轴向切片)和12个验证病例。

bb889614a50c404a8dcad9666354555d.png Automated cardiac diagnosis challenge心脏CMR(心脏核磁)一系列短轴切片从左心室底部到顶部覆盖心脏,切片厚度为5至8毫米。短轴平面内空间分辨率从0.83到1.75 mm^2/pixel。每个患者扫描都用手工标注了左心室(LV)、右心室(RV)和心肌(MYO)。报告了平均Dice,随机分为70个训练病例(1930个轴向切片),10个用于验证,20个用于测试。 

ee600ae6148d47d6b7683634ad8a8c34.png

消融实验 

为了彻底评估TransUNet框架并验证其在不同设置下的性能,进行了各种消融研究

包括:1)跳过连接数;2)输入分辨率;3)序列长度和补丁大小;4)模型缩放。

skip-connection的消融实验

首先做了skip-connection的消融实验,可以明显看出3层跳跃连接的DSC更高,代表着跳跃连接的增加对模型是有益的。

e74bb99ef13f4b0183c9ef67177ee473.png

输入分辨率的消融实验

作者测试了224×224分辨率和512×512分辨率的DSC,发现512×512分辨率图像作为输入获得了更高的DSC,但是处于性能考虑,还是选择了224×224进行后续测试。

7b60efb86f094504abf9f06e2d4d1cd7.png

序列长度和补丁大小的消融实验

较小的patch尺寸可以获得较高的分割性能。

Transformer的序列长度与补丁大小的平方成反比

b9a17daaa863421db76251a58406c334.png

模型缩放的消融实验

最后,我们对不同模型尺寸的TransUNet进行了消融实验。作者研究了两种不同的TransUNet配置, “Base”和“Large”模型。对于“Base”模型,隐藏大小D、层数、MLP大小和头部数量分别设置为12、768、3072和12;而“Large”模型的这些超参数分别设置为24、1024、4096和16。从表4我们得出结论,更大的模型导致更好的性能。考虑到计算成本,所有实验均采用“Base”模型。 01012daaee874c839fc482bd701c4cc3.png

可视化

作者还进行可视化比较,从图中可以看出TransUnet的分割更为精细,错误率更低。

309ee6f3eaf44bef9e2fb0da5415f357.png

Conclusion 

TransUNet是率先将Transformer结构用于医学图像分割工作的研究。TransUNet将重视全局信息的Transformer结构和底层图像特征的CNN一起进行混合编码,能够更大程度上提升UNet的分割效果。Transformer是一种天生具有强大自注意机制的结构。在这篇论文中,作者研究Transformer在一般医学图像分割中的应用。为了充分利用Transformer的力量,提出了TransUNet,它不仅将图像特征作为序列来编码强全局上下文,还通过Unet混合网络设计来很好地利用低层CNN特征。TransUNet可作为一种替代框架用于医学图像分割,其性能优于各种竞争方法,包括基于cnn的自注意力方法。本文为了完整的应用transformer,提出了TransUNet, 不仅通过将图像以序列处理编码全局上下文信息,也通过使用U型结构将低层次CNN特征利用上,作为基于FCN的主流医学图像分割方法的替代框架,在医学图像分割上(包括多器官分割和心脏分割)上均比各种竞争方法(像基于CNN的自注意方法)具有更优的表现。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/286770.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java基础--128陷阱

问题引入 Integer a 123; Integer b 123; System.out.println(ab); 结果为true。 但是如果代码如下 Integer a 1230;Integer b 1230;System.out.println(ab); 这个的结果就是false。 问题解决 当Integer a 123时,其实他底层自动转换成了Integer a Inte…

ElasticSearch之数据建模

写在前面 本文看下es数据建模相关的内容。 1:什么是数据建模 数据建模是对真实数据的一种抽象,最终映射为计算机形式的表现。其包括如下三个阶段: 1:概念模型 2:逻辑模型 3:数据模型2:es数据…

Chrome浏览器修改网页内容

方法一:使用开发者工具 在Chrome浏览器中打开要修改的网页。按下F12键打开开发者工具。在开发者工具窗口中,找到“Elements”标签页。在“Elements”标签页中,找到要修改的网页元素。双击要修改的网页元素,即可进行编辑。 方法二…

CCDP.02.OS正确部署后的Dashboard摘图说明

前言 在部署成功OpenStack后,应该可以在浏览器打开Dashboard,并对计算资源(这里主要是指VM)进行管理,也可以在Dashboard上面查看OpenStack是否存在错误,下面,已针对检查的关键点,用红…

什么是Web应用防火墙,为什么这么重要

在一个每天都会出现新的网络攻击并出现的世界中,我们必须不断寻找和建立新的安全控制和保护机制。目前发现的最常见的网络安全威胁通常涉及数据泄露并且发生在应用程序级别,这就是许多系统无法抵御此类攻击的原因。因此,WEB 应用防火墙变的极…

牛客NC108 最大正方形【中等 动态规划 Java,Go,PHP】

题目 题目链接: https://www.nowcoder.com/practice/0058c4092cec44c2975e38223f10470e 思路 动态规划: 先初始化第一行和第一列。然后其他单元格依赖自己的上边,左边和左上角参考答案Java import java.util.*;public class Solution {/*** 代码中的类…

电动汽车NVH来源浅析

NVH性能作为汽车最重要的性能指标之一,直接决定着用户感知质量,提高产品的舒适性可以保证优良的市场竞争性。 电动汽车相对于传统燃油汽车会更加静谧,内燃机的工作原理是通过燃油在汽缸中燃烧产生的爆炸推动活塞运动,进而驱动汽车…

线上问题排查实例分析|Redis使用不同编码引发的问题

前言 某个周末的晚上突然收到一波耗时上升报警,仔细一看报警消息,原来是出现了慢查请求导致集群耗时大幅上升,此时业务同学也收到上游服务受影响报警。在处理问题过程中,运维同学发现 Redis 集群中只有部分实例出现 cpu 利用率上…

考研数学|《1800》《1000》《880》《660》怎么选?怎么刷?看这一篇就够了!

25考研选资料,主打一个听人劝,吃饱饭 有很多讲义,比如张宇30讲,汤家凤高等数学讲义,李永乐复习全书,武忠祥高等数学基础篇等等。 然后习题也有很多,比如1000题,1800题,…

ICCV 2023 Oral | 人类语言演化中学习最优图像颜色编码

人类的语言是一种对复杂世界的高度简洁的编码,特别是语言中颜色的概念,成功地将原本极大的色彩空间(如256三次方真色彩空间)压缩至5到10种颜色。受此启发,来自上海交大,日本理化学研究所,东京大…

vue2 中使用音频

vue2 中使用音频 在 template 页面 写入 audio 标签 <template><div><audio ref"moreAudio" :src"moreAudioSrc"></audio><audio ref"noAudio" :src"noAudioSrc"></audio></div> </t…

百能云板开启高品质铝基PCB线路板定制服务

铝基板是一种具有良好散热功能的金属基覆铜板&#xff0c;一般单面板由三层结构所组成&#xff0c;分别是电路层&#xff08;铜箔&#xff09;、绝缘层和金属基层。用于高端使用的也有设计为双面板&#xff0c;结构为电路层、绝缘层、铝基、绝缘层、电路层。极少数应用为多层板…

iOS开发进阶(九):OC混合开发嵌套H5应用并互相通信

文章目录 一、前言二、嵌套H5应用并实现双方通信2.1 WKWebView 与JS 原生交互2.1.1 H5页面嵌套2.1.2 常用代理方法2.1.3 OC调用JS方法2.1.4 JS调用OC方法 2.2 JSCore 实现原生与H5交互2.2.1 OC调用H5方法并传参2.2.2 H5给OC传参 2.3 UIWebView的基本用法2.3.1 H5页面嵌套2.3.2 …

Linux 理解文件系统、磁盘结构、软硬链接

目录 一、理解磁盘结构 1、磁盘的物理结构 2、硬件层面理解 3、磁盘的具体物理存储结构 4、进行逻辑抽象 5、磁盘文件的管理 6、创建新文件的过程 二、理解文件系统 1、文件的构成 2、为何选择4KB而非512字节作为基本单位? 3、文件系统的组成 数据块&#xff08;Data Blocks&a…

flask_restful规范返回值

使用方法 导入 flask_restful.marshal_with 装饰器 定义一个字典变量来指定需要返回的标准化字段&#xff0c;以及该字段的数据类型 在请求方法中&#xff0c;返回自定义对象的时候&#xff0c; flask_restful 会自动的读 取对象模型上的所有属性。 组装成一个符合标准化参…

WordPress网站已经安装了SSL证书,但浏览器仍然提示不安全

WordPress网站已经安装了SSL证书&#xff0c;但浏览器仍然提示不安全 昨天我们新建了一个WordPress的网站&#xff0c;在已经安装了SSL证书的情况下&#xff0c;访问网站仍然会提示不安全。 我们使用的是Hostease提供的虚拟主机产品&#xff0c;之前从未出过这样的情况&#x…

rust中字符串String常用方法和注意事项

Rust 中通常说的字符串指的是&#xff1a;String 和 &str(字符串字面值、或者叫字符串切片)这两种类型。str是rust中基础字符串类型&#xff0c;String是标准库里面的类型。Rust 中的字符串本质上是&#xff1a;Byte的集合&#xff08;Vec<u8>&#xff09; 基础类型…

javaWeb在线考试系统

一、简介 在线考试系统是现代教育中一项重要的辅助教学工具&#xff0c;它为学生提供了便捷的考试方式&#xff0c;同时也为教师提供了高效的考试管理方式。我设计了一个基于JavaWeb的在线考试系统&#xff0c;该系统包括三个角色&#xff1a;管理员、老师和学生。管理员拥有菜…

特别澄清:关于ChatGPT辅助论文写作的重要说明

“高扬&#xff0c;快&#xff0c;教我用ChatGPT写论文&#xff0c;明天要交稿&#xff01;” “高师傅&#xff0c;ChatGPT如何能生成调查数据&#xff0c;我想直接拿来用。” “高老师&#xff0c;ChatGPT能不能一下子把论文生成出来&#xff0c;不用修改&#xff0c;直接就能…

微信小程序实战:无痛集成腾讯地图服务

在移动互联网时代,地图服务无疑是应用程序中最常见也最实用的功能之一。无论是导航定位、附近搜索还是路线规划,地图服务都能为用户提供极大的便利。在微信小程序开发中,我们可以轻松集成腾讯地图服务,为小程序赋能增值体验。本文将详细介绍如何在微信小程序中集成使用腾讯地图…