TrustRAG旨在风险感知的信息检索场景中提高生成内容的一致性和可信度。用户可以利用私有语料库构建自己的RAG应用程序,研究库中的RAG组件,并使用定制模块进行实验。论文展示了TrustRAG系统在摘要问答任务中的应用,并通过案例研究验证了其有效性。总体而言,TrustRAG通过语义增强索引、效用增强检索和引用增强生成,显著提高了RAG系统的可靠性和可信度。
研究背景
- 研究问题:这篇文章要解决的问题是如何增强检索增强生成(RAG)系统的可信度。尽管RAG技术在提高答案准确性方面取得了显著进展,但生成结果的可信度仍然是一个挑战。
- 研究难点:该问题的研究难点包括:处理实时信息的缺失、领域知识的不足以及生成虚假答案的风险,这些因素导致在实际应用中生成结果的不可靠性。
- 相关工作:该问题的研究相关工作包括RAG框架的改进、源归属的改进以及各种开源系统的开发。例如,Self-RAG、ActiveRAG、CoRAG等框架旨在提高答案的准确性,而InstructRAG、LongCite、SelfCite等则专注于改进结果的可信度。此外,Langchain、LlamaIndex、LightRAG等开源系统支持RAG的开发和应用。
研究方法
这篇论文提出了TrustRAG框架,用于解决RAG系统可信度不高的问题。具体来说,TrustRAG从索引、检索和生成三个阶段进行改进:
- 语义增强索引:为了解决现有文本分块方法导致的语义丢失问题,TrustRAG引入了语义增强分块策略。该策略首先使用大型语言模型(LLM)进行共指消解,以解决代词或不完全引用引起的歧义。其次,将文档中的时间字段标准化为基于发布日期的标准日期格式,以恢复丢失的语义信息。最后,支持高级语义分段技术,通过嵌入技术和大型语言模型动态识别语义边界,确保分块的高质量和上下文一致性。参见trustrag/modules/refiner/decontextualizer.py、trustrag/modules/chunks/semantic_chunk.py。
- 效用增强检索:传统的RAG系统中,检索到的文档相关性仅由向量相似性决定。TrustRAG引入了效用判断和细粒度证据提取两个关键创新:
- 效用判断:通过精心设计提示,使用大型语言模型评估每个文档对用户查询和生成任务的相关性。这种评估超越了表面相似性,结合了更深层次的上下文理解,确保只选择最有用的文档。参见trustrag/modules/judger/llm_judger.py。
- 细粒度证据提取:在识别有用文档后,TrustRAG通过细粒度证据提取提取最相关的句子。该过程利用模型蒸馏技术降低计算成本,同时保持高准确性和相关性。参见trustrag/modules/refiner/compressor.py。
- <