YOLOv8官方仓库正式支持RT-DETR训练、测试以及推理

YOLOv8太卷啦 | YOLOv8官方仓库正式支持RT-DETR训练、测试以及推理

在这里插入图片描述
RT-DETR由百度开发,是一款端到端目标检测器,在保持高精度的同时提供实时性能。它利用ViT的强大特性,通过解耦尺度内交互和跨尺度融合来有效处理多尺度特征。
RT-DETR具有很强的适应性,支持使用不同的解码器层灵活调整推理速度,而无需重新训练。该模型在具有TensorRT的CUDA等加速后端方面表现出色,优于许多其他实时目标检测器。

1. 使用方法

在这里插入图片描述

2. YOLOv8中RT-DETR精度

在这里插入图片描述

3. RT-DETR-L的YAML

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'# [depth, width, max_channels]l: [1.00, 1.00, 1024]backbone:# [from, repeats, module, args]- [-1, 1, HGStem, [32, 48]]  # 0-P2/4- [-1, 6, HGBlock, [48, 128, 3]]  # stage 1- [-1, 1, DWConv, [128, 3, 2, 1, False]]  # 2-P3/8- [-1, 6, HGBlock, [96, 512, 3]]   # stage 2- [-1, 1, DWConv, [512, 3, 2, 1, False]]  # 4-P3/16- [-1, 6, HGBlock, [192, 1024, 5, True, False]]  # cm, c2, k, light, shortcut- [-1, 6, HGBlock, [192, 1024, 5, True, True]]- [-1, 6, HGBlock, [192, 1024, 5, True, True]]  # stage 3- [-1, 1, DWConv, [1024, 3, 2, 1, False]]  # 8-P4/32- [-1, 6, HGBlock, [384, 2048, 5, True, False]]  # stage 4head:- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 10 input_proj.2- [-1, 1, AIFI, [1024, 8]]- [-1, 1, Conv, [256, 1, 1]]   # 12, Y5, lateral_convs.0- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.1- [[-2, -1], 1, Concat, [1]]- [-1, 3, RepC3, [256]]  # 16, fpn_blocks.0- [-1, 1, Conv, [256, 1, 1]]   # 17, Y4, lateral_convs.1- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 19 input_proj.0- [[-2, -1], 1, Concat, [1]]  # cat backbone P4- [-1, 3, RepC3, [256]]    # X3 (21), fpn_blocks.1- [-1, 1, Conv, [256, 3, 2]]   # 22, downsample_convs.0- [[-1, 17], 1, Concat, [1]]  # cat Y4- [-1, 3, RepC3, [256]]    # F4 (24), pan_blocks.0- [-1, 1, Conv, [256, 3, 2]]   # 25, downsample_convs.1- [[-1, 12], 1, Concat, [1]]  # cat Y5- [-1, 3, RepC3, [256]]    # F5 (27), pan_blocks.1- [[21, 24, 27], 1, RTDETRDecoder, [nc]]  # Detect(P3, P4, P5)

4. 方法概述

在这里插入图片描述
百度RT-DETR概述。RT-DETR模型架构图显示骨干{S3、S4、S5}的最后三个阶段作为编码器的输入。高效的混合编码器通过尺度内特征交互(AIFI)和跨尺度特征融合模块(CCFM)将多尺度特征转换为图像特征序列。IoU感知查询选择用于选择固定数量的图像特征以用作解码器的初始对象查询。最后,具有辅助预测头的解码器迭代地优化对象查询,以生成框和置信度分数(源)。
主要特点:
(1)高效混合编码器:RT-DETR使用了一种高效的混合编码器,通过解耦尺度内交互和跨尺度融合来处理多尺度特征。这种独特的基于视觉Transformer的设计降低了计算成本,并允许实时物体检测。
(2)IoU感知查询选择:RT-DETR通过利用IoU感知的查询选择改进了目标查询初始化。这使得模型能够聚焦于场景中最相关的目标,从而提高了检测精度。
(3)自适应推理速度:RT-DETR支持通过使用不同的解码器层来灵活调整推理速度,而无需重新训练。这种适应性便于在各种实时目标检测场景中的实际应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/287761.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关闭Elasticsearch built-in security features are not enabled

禁用Kibana安全提示(Elasticsearch built-in security features are not enabled) Kibana提示#! Elasticsearch built-in security features are not enabled. Without authentication, your cluster could be accessible to anyone. See https://www.e…

C语言中位运算介绍

在C语言中,位运算是一种对二进制位进行操作的运算方式,它可以对数据的二进制表示进行位级别的操作,包括按位与、按位或、按位异或、按位取反等。位运算常用于处理底层数据结构、优化代码性能以及实现各种算法。本文将深入介绍C语言中的位运算…

spring 的理解

spring 的理解 spring 是一个基础的框架,同时提高了一个Bean 的容器,用来装载Bean对象spring会帮我们创建Bean 对象并维护Bean对象 的生命周期。在spring 框架上,还有springCloud,spring Boot 的技术框架,都是以Spring为基石的sp…

AIGC工具系列之——基于OpenAI的GPT大模型搭建自己的AIGC工具

今天我们来讲讲目前非常火的人工智能话题“AIGC”,以及怎么使用目前的AI技术来开发,构建自己的AIGC工具 什么是AIGC? AIGC它的英文全称为(Artificial Intelligence Generated Content),中文翻译过来就是“人工智能生成内容”&…

HDFSRPC通信框架详解

本文主要对HDFSRPC通信框架解析。包括listener,reader,handler,responser等实现类的源码分析。注意hadoop版本为3.1.1。 写在前面 rpc肯定依赖于socket通信,并且使用的是java NIO。读者最好对nio有一定的了解,文章中…

《量子计算:揭开未来科技新篇章》

随着科技的不断发展,量子计算作为一项颠覆性的技术逐渐走进人们的视野,引发了广泛的关注和探讨。本文将围绕量子计算的技术进展、技术原理、行业应用案例、未来趋势预测以及学习路线等方向,深入探讨这一领域的前沿动态和未来发展趋势。 量子…

极端道路天气数据集 雨天 雾天 道路晴朗

极端道路天气数据集 是一系列专为自动驾驶、智能交通系统研发以及计算机视觉算法测试而设计的真实世界或模拟的道路环境图像和视频集合。这些数据集包含了在各类极端天气条件下捕捉到的道路场景,例如大雾、暴雨、暴雪、冰雹、雾霾、道路结冰等,这些都是…

移动硬盘未初始化?数据恢复指南助你轻松应对

当我们插上移动硬盘准备使用时,却发现电脑提示“移动硬盘未初始化”,这无疑会让我们感到困扰和焦虑。毕竟,硬盘中可能存储着重要的文件、照片、视频等个人或工作资料。那么,面对移动硬盘未初始化的问题,我们该如何应对…

管理能力学习笔记三:管理者的时间管理法

时间管理三步法 1、对任务进行分类 2、估算任务时间 3、持续反思评估 对任务进行分类 分类方法:时间管理四象限 A类 B类 C类 D类 估算时间 需要预留休息时间和机动时间 持续反思评估 核对检查任务 自我提问 处理日常干扰的办法 对事情发出提问 对话内容进行…

后端系统开发之——功能完善

原文地址:https://blog.yiming1234.cn/?p830 下面是正文内容: 前言 通过SpringBoot开发用户模块的部分也就差不多要结束了,这一片文章就主要提一些在系统开发中需要注意到的细节部分和功能,也就是剩余的部分。 但是这个专栏只介…

我的创作纪念日 ---- 2024/3/26

前言 2024.3.26是我在CSDN成为创作者的第128天,也是我第一次真正在网上创作的第128天 当我还在日常创作时,突然发现我收到了一封信 我想我可以分享一下这段时间的感想以及收获 机缘 在CSDN的这段时间里,我学习到了很多知识,也…

服务运营 | 印第安纳大学翟成成:改变生活的水井选址

编者按: 作者于2023年4月在“Production and Operations Management”上发表的“Improving drinking water access and equity in rural Sub-Saharan Africa”探讨了欠发达地区水资源供应中的可达性和公平性问题。作者于2020年1月去往非洲埃塞俄比亚提格雷地区进行…

蓝桥杯 2022 省B 砍竹子

思路: 非常明显,这题是个贪心。因为这题是求最小操作次数,而且每次操作都会变小,所以肯定要优先操作大的元素,这样它变小之后才可能和其它元素一起操作以减少操作次数。 所以:建立两个数组,一…

js选择语句

文章目录 1. if 分支语句1.1. 示例代码1.2. 运行结果 2. if 双分支语句3. if 多分支语句4. switch 语句(了解)4.1. 注意4.2. case 穿透现象4.3. case 穿透产生的原因 5. switch 语句与选择语句区别别5.1. 语法上的区别5.2. 应用场景上的区别 6. 三元表达…

本地GPU调用失败问题解决2修改pytorch版本(失败)

一、基于现有anaconda中的环境复制新环境 1、管理员打开anaconda 进入当前环境: 输入 conda env list conda activate env_pytorch1121 2、复制当前环境为新环境 conda create --name env_pytorch2.2.0cu --clone env_pytorch1121 2)删除其中的p…

库存控制秘诀:鞋服品牌如何避免库存积压风险

库存积压对于鞋服品牌而言,是一个普遍而又棘手的问题。过多的库存不仅占用了大量的资金,还可能导致产品过时、贬值,甚至影响品牌的长期发展。因此,如何有效地控制库存,避免积压风险,成为了鞋服品牌必须面对…

window下迁移SVN仓库到新的windows服务器

一、背景 一个基于 Windows 的 SVN 服务器,用于管理团队的代码库。该 SVN 仓库托管着公司的软件项目,包括多个分支和版本的代码。我们的团队规模约为 50 人,分布在不同的地理位置,他们都依赖 SVN 仓库来进行代码版本控制和协作开…

深度学习十大算法之图神经网络(GNN)

一、图神经网络的基础 图的基本概念 图是数学中的一个基本概念,用于表示事物间复杂的关系。在图论中,图通常被定义为一组节点(或称为顶点)以及连接这些节点的边。每个边可以有方向,称为有向边,或者没有方向…

C++剑指offer与高频面试题源码解答与分析

这是博主在当初秋招刷题时候记录的剑指offer第二版以及一些高频题的C源码和解法分析,可以说把这上面的题练好了面试不虚,最后也顺利帮助我拿下baidu ali meituan等多家大厂offer。整篇文章写了大概5W个字,也是积累了很长一段时间的作品&#…

函数进阶-Python

师从黑马程序员 函数中多个返回值的接收 def test_return():return 1,"hello",3x,y,ztest_return() print(x) print(y) print(z) 多种参数的使用 函数参数种类 位置参数 关键字参数 def user_info(name,age,gender):print(f"姓名是{name},年龄是:{age},性别是…