无人问津也好,技不如人也罢,都应静下心来,去做该做的事。
最近在学STM32,所以也开贴记录一下主要内容,省的过目即忘。视频教程为江科大(改名江协科技),网站jiangxiekeji.com
本期开始介绍STM32的ADC——模数转换器,对于GPIO来说,它只能读取引脚的高低电平,要么是高电平,要么是低电平,只有两个值。而使用ADC,我们就可以对这个高电平和低电平之间的任意电压进行量化,最终用一个变量来表示,读取这个变量,就可以知道引脚的具体电压到底是多少了。
所以ADC其实就是一个电压表,把引脚的电压值测出来,放在一个变量里。这就是ADC的作用。
CTRL+ALT+空格或CTRL+空格:提示代码,代码自动补全
ADC常用函数
RCC_ADCCLKConfig:这个函数是用来配置ADCCLK分频器的,'它可以对APB2的72MHz时钟选择2、4、6、8分频,输入到ADCCLK。这个函数在RCC库函数里。
void RCC_ADCCLKConfig(uint32_t RCC_PCLK2);
下面的函数在ADC.h里
ADC_DeInit恢复缺省配置、ADC_Init初始化、ADC_StructInit结构体初始化
void ADC_DeInit(ADC_TypeDef* ADCx);
void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct);
void ADC_StructInit(ADC_InitTypeDef* ADC_InitStruct);
ADC_Cmd:这个是用于给ADC上电的,就是ADC基本结构图里的开关控制。
void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState);
DMA_Cmd:这个是用于开启DMA输出信号的,如果使用DMA转运数据,那就得调用这个函数。
void ADC_DMACmd(ADC_TypeDef* ADCx, FunctionalState NewState);
ADC_ITConfig:中断输出控制,用于控制某个中断,能不能通往NVIC。
void ADC_ITConfig(ADC_TypeDef* ADCx, uint16_t ADC_IT, FunctionalState NewState);
接下来四个函数分别是复位校准、获取复位校准状态、开始校准、获取开始校准状态,这是用于控制校准的函数。我们在ADC初始化完成之后,依次调用就行了。
void ADC_ResetCalibration(ADC_TypeDef* ADCx);
FlagStatus ADC_GetResetCalibrationStatus(ADC_TypeDef* ADCx);
void ADC_StartCalibration(ADC_TypeDef* ADCx);
FlagStatus ADC_GetCalibrationStatus(ADC_TypeDef* ADCx);
ADC软件开始转换控制,这个就是用于软件触发的函数了。调用一下就能进行软件触发控制,我们这个代码目前使用软件触发。
void ADC_SoftwareStartConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState);
ADC获取软件开始转换状态,这个函数的返回值跟转换是否结束,毫无关系。这个函数其实没啥用,我们一般不用,不要被他误导了。
FlagStatus ADC_GetSoftwareStartConvStatus(ADC_TypeDef* ADCx);
ADC_GetFlagStatus:这个函数才是判断是否转换结束的。获取标志位状态,然后参数给EOC的标志位,判断EOC标志位是不是置1了。如果转换结束,EOC标志位置1,然后调用这个函数,判断标志位。这样才是正确的判断转换是否结束的方法。
FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint8_t ADC_FLAG);
然后下面这两个函数,是用来配置间断模式的。
ADC_DiscModeChannelCountConfig:每隔几个通道间断一次。
ADC_DiscModeCmd:是不是启用间断模式。
void ADC_DiscModeChannelCountConfig(ADC_TypeDef* ADCx, uint8_t Number);
void ADC_DiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState);
ADC_RegularChannelConfig(ADCx,你想指定的通道,序列几的位置,指定通道的采样时间):ADC规则组通道配置,这个函数比较重要,它的作用就是给序列的每个位置填写指定的通道,就是填写点菜菜单的过程。
void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime);
ADC外部触发转换控制,就是是否允许外部触发转换。
void ADC_ExternalTrigConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState);
ADC获取转换值,这个函数也比较重要。获取AD转换的数据寄存器,读取转换结果就要使用这个函数。
uint16_t ADC_GetConversionValue(ADC_TypeDef* ADCx);
ADC获取双模式转换值,这个是双ADC模式读取转换结果的函数,暂时不用。
uint32_t ADC_GetDualModeConversionValue(void);
到这里,以上这些函数是对ADC的一些基本功能和规则组的配置。
接下来这些函数里面都带了一个Injected,就是注入组的意思,注入组本期也不用。
void ADC_AutoInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState);
void ADC_InjectedDiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState);
void ADC_ExternalTrigInjectedConvConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConv);
void ADC_ExternalTrigInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState);
void ADC_SoftwareStartInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState);
FlagStatus ADC_GetSoftwareStartInjectedConvCmdStatus(ADC_TypeDef* ADCx);
void ADC_InjectedChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime);
void ADC_InjectedSequencerLengthConfig(ADC_TypeDef* ADCx, uint8_t Length);
void ADC_SetInjectedOffset(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel, uint16_t Offset);
uint16_t ADC_GetInjectedConversionValue(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel);
这三个函数就是对模拟看门狗进行配置的,第一个是是否启动模拟看门狗,第二个是配置高低阈值,第三个是配置看门的通道。
void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx, uint32_t ADC_AnalogWatchdog);
void ADC_AnalogWatchdogThresholdsConfig(ADC_TypeDef* ADCx, uint16_t HighThreshold, uint16_t LowThreshold);
void ADC_AnalogWatchdogSingleChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel);
ADC温度传感器、内部参考电压控制,这个是用来开启内部的两个通道的,如果你要用这两个通道,那得调用这个函数,开启一下。要不然是读不到正确的结果的,这个注意一下。
void ADC_TempSensorVrefintCmd(FunctionalState NewState);
那最后四个,获取标志位状态、清除标志位、获取中断状态、清除中断挂起位,这些函数也是常用函数了。
FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint8_t ADC_FLAG);
void ADC_ClearFlag(ADC_TypeDef* ADCx, uint8_t ADC_FLAG);
ITStatus ADC_GetITStatus(ADC_TypeDef* ADCx, uint16_t ADC_IT);
void ADC_ClearITPendingBit(ADC_TypeDef* ADCx, uint16_t ADC_IT);
ADC基本结构
左边是输入通道,16个GPIO口,外加两个内部的通道。然后进入AD转换器,AD转换器里有两个组,一个是规则组,一个是注入组,规则组最多可以选中16个通道,注入组最大可以选择4个通道。然后转换的结果可以存放在AD数据寄存器里,其中规则组只有1个数据寄存器,注入组有4个。然后下面这里有触发控制, 提供了开始转换这个START信号,触发控制可以选择软件触发和硬件触发。硬件触发主要是来自于定时器,当然也可以选择外部中断的引脚。右边这里是来自于RCC的ADC时钟CLOCK,ADC逐次比较的过程就是由这个时钟推动的。然后上面,可以布置一个模拟看门狗用于监测转换结果的范围,如果超出设定的阈值,就通过中断输出控制,向NVIC申请中断。另外,规则组和注入组转换完成后会有个EOC信号,它会置一个标志位,当然也可以通向NVIC。最后右下角这里还有个开关控制,在库函数中,就是ADC_Cmd函数,用于给ADC上电的。
程序现象
共有两个程序
第一个程序是AD单通道
在面包板上接一个电位器,用这个电位器产生一个0-3.3V连续变化的模拟电压信号,接到STM32的PA0,之后用STM32内部的ADC读取电压数据,显示在屏幕上。这里屏幕第一行显示的是AD转换后的原始数据,第二行是经过处理后实际的电压值。往左拧,AD值减小,电压值也减,;AD值最小是0,对应的电压就是0V;往右拧,AD值变大,对应电压值也变大。STM32的ADC是12位的,所以AD结果最大值是4095,也就是2^12-1,对应电压是3.3V。
那这里AD值的未尾会有些抖动,这是正常的波动。如果你想对这个值进行判断,再执行一些操作,比如光线的AD值小于某一阈值,就开灯;大于某一阈值,就关灯。可能会存在这种情况,比如光线逐渐变暗,AD值逐渐变小,但是由于波动,AD值会在判断阈值附近来回跳变。这会导致输出产生抖动,来回开灯关灯开灯关灯,是吧。
那如何避免?这个可以使用迟滞比较的方法来完成,设置两个阈值,低于下阈值时,开灯;高于上阈值时,才关灯,这就可以避免输出抖动的问题了。还可以采取滤波的方法,让AD值平滑一些,比如均值滤波,就是读10个或20个值,取平均值,作为滤波的AD值。或者还可以裁剪分辨率,把数据的尾数去掉,也能减少波动。
接线图
根据引脚定义表,PA0到PB1这10个脚是ADC的10个通道,可以10个任意选一个接。
初始化步骤
根据ADC基本结构图来一步步配置即可。
第一步,开启RCC时钟,包括ADC和GPIO的时钟。另外这里ADCCLK的分频器,也需要配置一下。
/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); //开启ADC1的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //开启GPIOA的时钟/*设置ADC时钟*/RCC_ADCCLKConfig(RCC_PCLK2_Div6); //选择时钟6分频,ADCCLK = 72MHz / 6 = 12MHz
第二步,配置GPIO,把需要用的GPIO配置成模拟输入的模式。
/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA0引脚初始化为模拟输入
第三步,配置这里的多路开关,把左边的通道接入到右边的规则组列表里。这个过程就是我们之前说的点菜,把各个通道的菜,列在菜单里。使用单次转换、非扫描模式。
/*规则组通道配置*/ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5); //规则组序列1的位置,配置为通道0
第四步,就是配置ADC转换器了。在库函数里,是用结构体来配置的,可以配置AD转换器和AD数据寄存器电路的参数。包括ADC是单次转换还是连续转换、扫描还是非扫描、有几个通道。触发源是什么,数据对齐是左对齐还是右对齐。这一大批参数,用一个结构体配置就可以了。
/*ADC初始化*/ADC_InitTypeDef ADC_InitStructure; //定义结构体变量ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //模式,选择独立模式,即单独使用ADC1ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //数据对齐,选择右对齐ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //外部触发,使用软件触发,不需要外部触发ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //连续转换,失能,每转换一次规则组序列后停止ADC_InitStructure.ADC_ScanConvMode = DISABLE; //扫描模式,失能,只转换规则组的序列1这一个位置ADC_InitStructure.ADC_NbrOfChannel = 1; //通道数,为1,仅在扫描模式下,才需要指定大于1的数,在非扫描模式下,只能是1ADC_Init(ADC1, &ADC_InitStructure); //将结构体变量交给ADC_Init,配置ADC1
如果你需要模拟看门狗,那会有几个函数用来配置阈值和监测通道的。
如果你想开启中断,那就在中断输出控制里用ITConfig函数开启对应的中断输出,然后再在NVIC里,配置一下优先级,这样就能触发中断了。不过这一块,模拟看门狗和中断,我们本期暂时不用。
第五步,就是开关控制,调用一下ADC_Cmd函数,开启ADC。这样ADC就酒配置完成了,就能正常工作了。当然,在开启ADC之后,根据手册里的建议。我们还可以对ADC开启校准,减小误差。
/*ADC使能*/ADC_Cmd(ADC1, ENABLE); //使能ADC1,ADC开始运行/*ADC校准*/ADC_ResetCalibration(ADC1); //固定流程,内部有电路会自动执行校准while (ADC_GetResetCalibrationStatus(ADC1) == SET);ADC_StartCalibration(ADC1);while (ADC_GetCalibrationStatus(ADC1) == SET);
在ADC工作时,如果想要软件触发转换,那会有函数可以触发。如果想读取转换结果,那也会有函数可以读取结果。
/*** 函 数:获取AD转换的值* 参 数:无* 返 回 值:AD转换的值,范围:0~4095*/
uint16_t AD_GetValue(void)
{ADC_SoftwareStartConvCmd(ADC1, ENABLE); //软件触发AD转换一次while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); //等待EOC标志位,即等待AD转换结束,此程序这里大概会等待5.6usreturn ADC_GetConversionValue(ADC1); //读数据寄存器,得到AD转换的结果
}
此程序的转换时间:72MHz/6 × (55.5+12.5)= 5.6us
代码展示
在Hardware文件夹下新建AD_Init.h、.c文件,把ADC驱动函数封装起来。
main函数
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "AD.h"uint16_t ADValue; //定义AD值变量
float Voltage; //定义电压变量int main(void)
{/*模块初始化*/OLED_Init(); //OLED初始化AD_Init(); //AD初始化/*显示静态字符串*/OLED_ShowString(1, 1, "ADValue:");OLED_ShowString(2, 1, "Voltage:0.00V");while (1){ADValue = AD_GetValue(); //获取AD转换的值Voltage = (float)ADValue / 4095 * 3.3; //将AD值线性变换到0~3.3的范围,表示电压OLED_ShowNum(1, 9, ADValue, 4); //显示AD值OLED_ShowNum(2, 9, Voltage, 1); //显示电压值的整数部分OLED_ShowNum(2, 11, (uint16_t)(Voltage * 100) % 100, 2); //显示电压值的小数部分Delay_ms(100); //延时100ms,手动增加一些转换的间隔时间}
}
AD.h文件
#ifndef __AD_H
#define __AD_Hvoid AD_Init(void);
uint16_t AD_GetValue(void);#endif
AD.c文件
#include "stm32f10x.h" // Device header/*** 函 数:AD初始化* 参 数:无* 返 回 值:无*/
void AD_Init(void)
{/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); //开启ADC1的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //开启GPIOA的时钟/*设置ADC时钟*/RCC_ADCCLKConfig(RCC_PCLK2_Div6); //选择时钟6分频,ADCCLK = 72MHz / 6 = 12MHz/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA0引脚初始化为模拟输入/*规则组通道配置*/ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5); //规则组序列1的位置,配置为通道0/*ADC初始化*/ADC_InitTypeDef ADC_InitStructure; //定义结构体变量ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //模式,选择独立模式,即单独使用ADC1ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //数据对齐,选择右对齐ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //外部触发,使用软件触发,不需要外部触发ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //连续转换,失能,每转换一次规则组序列后停止ADC_InitStructure.ADC_ScanConvMode = DISABLE; //扫描模式,失能,只转换规则组的序列1这一个位置ADC_InitStructure.ADC_NbrOfChannel = 1; //通道数,为1,仅在扫描模式下,才需要指定大于1的数,在非扫描模式下,只能是1ADC_Init(ADC1, &ADC_InitStructure); //将结构体变量交给ADC_Init,配置ADC1/*ADC使能*/ADC_Cmd(ADC1, ENABLE); //使能ADC1,ADC开始运行/*ADC校准*/ADC_ResetCalibration(ADC1); //固定流程,内部有电路会自动执行校准while (ADC_GetResetCalibrationStatus(ADC1) == SET);ADC_StartCalibration(ADC1);while (ADC_GetCalibrationStatus(ADC1) == SET);
}/*** 函 数:获取AD转换的值* 参 数:无* 返 回 值:AD转换的值,范围:0~4095*/
uint16_t AD_GetValue(void)
{ADC_SoftwareStartConvCmd(ADC1, ENABLE); //软件触发AD转换一次while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); //等待EOC标志位,即等待AD转换结束return ADC_GetConversionValue(ADC1); //读数据寄存器,得到AD转换的结果
}
第二个是AD多通道
在第一个实验的基础上接多三个模块,把它们的AO(模拟电压输出端),分别接在了A1、A2、A3脚,加上刚才的电位器,总共4个输出通道。然后测出来的4个AD数据分别显示在屏幕上。
第一个电位器,看第一行的AD0。往右拧增大,和第一个程序一样;光敏电阻,看第二行的AD1,遮挡一下光敏电阻,光线减小,AD值增大;热敏电阻,看第三行的AD2,用手热一下这个热敏电阻,温度升高,AD值减小;最后是反射式红外传感器,手靠近,有反光,AD值减小。
接线图
同样,这些GPIO口也是可以在PA0~PB1之间任意选择的。这里选择前四个GPIO口。
初始化步骤
如果想要用扫描模式实现多通道,最好要配合DMA来实现。
这里使用单次转换、非扫描模式,只需要在每次触发转换之前,手动更改一下列表第一个位置的通道就行了。比如第一次转换,先写入通道0,之后触发、等待、读值;第二次转换,再把通道0改成通道1,之后触发、等待、读值;第三次转换,再先改成通道2,等等等等。
在AD单通道的代码上稍加修改即可,把规则组通道配置代码移动到
/*规则组通道配置*/ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5); //规则组序列1的位置,配置为通道0
以下函数里,并添加多一个参数uint8_t ADC_Channel
/*** 函 数:获取AD转换的值* 参 数:ADC_Channel 指定AD转换的通道,范围:ADC_Channel_x,其中x可以是0/1/2/3* 返 回 值:AD转换的值,范围:0~4095*/
uint16_t AD_GetValue(uint8_t ADC_Channel)
{ADC_RegularChannelConfig(ADC1, ADC_Channel, 1, ADC_SampleTime_55Cycles5); //在每次转换前,根据函数形参灵活更改规则组的通道1ADC_SoftwareStartConvCmd(ADC1, ENABLE); //软件触发AD转换一次while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); //等待EOC标志位,即等待AD转换结束return ADC_GetConversionValue(ADC1); //读数据寄存器,得到AD转换的结果
}
代码展示
现在就是依次启动4次转换,并且在转换之前,指定了转换的通道。每次转换完成之后,把结果分别存在4个数据里,最后显示一下。这就是使用单次转换非扫描的模式,实现AD多通道的方法。
main函数
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "AD.h"uint16_t AD0, AD1, AD2, AD3; //定义AD值变量int main(void)
{/*模块初始化*/OLED_Init(); //OLED初始化AD_Init(); //AD初始化/*显示静态字符串*/OLED_ShowString(1, 1, "AD0:");OLED_ShowString(2, 1, "AD1:");OLED_ShowString(3, 1, "AD2:");OLED_ShowString(4, 1, "AD3:");while (1){AD0 = AD_GetValue(ADC_Channel_0); //单次启动ADC,转换通道0AD1 = AD_GetValue(ADC_Channel_1); //单次启动ADC,转换通道1AD2 = AD_GetValue(ADC_Channel_2); //单次启动ADC,转换通道2AD3 = AD_GetValue(ADC_Channel_3); //单次启动ADC,转换通道3OLED_ShowNum(1, 5, AD0, 4); //显示通道0的转换结果AD0OLED_ShowNum(2, 5, AD1, 4); //显示通道1的转换结果AD1OLED_ShowNum(3, 5, AD2, 4); //显示通道2的转换结果AD2OLED_ShowNum(4, 5, AD3, 4); //显示通道3的转换结果AD3Delay_ms(100); //延时100ms,手动增加一些转换的间隔时间}
}
AD.h文件
#ifndef __AD_H
#define __AD_Hvoid AD_Init(void);
uint16_t AD_GetValue(uint8_t ADC_Channel);#endif
AD.c文件
#include "stm32f10x.h" // Device header/*** 函 数:AD初始化* 参 数:无* 返 回 值:无*/
void AD_Init(void)
{/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); //开启ADC1的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //开启GPIOA的时钟/*设置ADC时钟*/RCC_ADCCLKConfig(RCC_PCLK2_Div6); //选择时钟6分频,ADCCLK = 72MHz / 6 = 12MHz/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA0、PA1、PA2和PA3引脚初始化为模拟输入/*不在此处配置规则组序列,而是在每次AD转换前配置,这样可以灵活更改AD转换的通道*//*ADC初始化*/ADC_InitTypeDef ADC_InitStructure; //定义结构体变量ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //模式,选择独立模式,即单独使用ADC1ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //数据对齐,选择右对齐ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //外部触发,使用软件触发,不需要外部触发ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //连续转换,失能,每转换一次规则组序列后停止ADC_InitStructure.ADC_ScanConvMode = DISABLE; //扫描模式,失能,只转换规则组的序列1这一个位置ADC_InitStructure.ADC_NbrOfChannel = 1; //通道数,为1,仅在扫描模式下,才需要指定大于1的数,在非扫描模式下,只能是1ADC_Init(ADC1, &ADC_InitStructure); //将结构体变量交给ADC_Init,配置ADC1/*ADC使能*/ADC_Cmd(ADC1, ENABLE); //使能ADC1,ADC开始运行/*ADC校准*/ADC_ResetCalibration(ADC1); //固定流程,内部有电路会自动执行校准while (ADC_GetResetCalibrationStatus(ADC1) == SET);ADC_StartCalibration(ADC1);while (ADC_GetCalibrationStatus(ADC1) == SET);
}/*** 函 数:获取AD转换的值* 参 数:ADC_Channel 指定AD转换的通道,范围:ADC_Channel_x,其中x可以是0/1/2/3* 返 回 值:AD转换的值,范围:0~4095*/
uint16_t AD_GetValue(uint8_t ADC_Channel)
{ADC_RegularChannelConfig(ADC1, ADC_Channel, 1, ADC_SampleTime_55Cycles5); //在每次转换前,根据函数形参灵活更改规则组的通道1ADC_SoftwareStartConvCmd(ADC1, ENABLE); //软件触发AD转换一次while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); //等待EOC标志位,即等待AD转换结束return ADC_GetConversionValue(ADC1); //读数据寄存器,得到AD转换的结果
}