Stable Diffusion XL之核心基础内容

Stable Diffusion XL之核心基础内容

  • 一. Stable Diffusion XL核心基础内容
    • 1.1 Stable Diffusion XL的主要优化
    • 1.2 SDXL整体架构初识
    • 1.3 VAE模型
      • 1.VAE基本介绍
      • 2. VAE基本模型结构
      • 3.VAE的训练
    • 1.4 U-Net模型(Base部分)
      • 1. 十四个基本模块概述
      • 2. SDXL_Spatial Transformer_X模块
      • 3. CrossAttention模块细节
    • 1.5 CLIP Text Encoder模型
    • 1.6 Refiner模型
  • 二. Stable Diffusion XL训练技巧和细节
    • 2.1 图像尺寸条件化
    • 2.2 图像裁剪参数条件化
    • 2.3 多尺度训练
    • 2.4 使用Offset Noise

一. Stable Diffusion XL核心基础内容

1.1 Stable Diffusion XL的主要优化

与Stable Diffusion 1.x-2.x相比,Stable Diffusion XL主要进行如下的优化:

  1. 对Stable Diffusion 1.x-2.x的U-Net,VAE,CLIP Text Encoder三大核心模型都做了改进。
  2. 增加一个独立的基于Latent的Refiner模型,也是一个扩散模型,用来提升生成图像的精细化程度。
  3. 设计了很多训练Tricks,包括图像尺寸条件化策略、图像裁剪参数条件化策略以及多尺度训练策略等。
  4. 先发布Stable Diffusion XL 0.9测试版本,基于用户的使用体验和图片生成的反馈情况,针对性增加数据集和使用RLHF(Reinforcement Learning from Human Feedback,基于人类反馈的强化学习)技术优化训练后,推出了Stable Diffusion XL 1.0正式版。

1.2 SDXL整体架构初识

Stable Diffusion XL是一个二阶段的级联扩散模型(Latent Diffusion Model),包括Base模型和Refiner模型
其中,Base模型的主要工作和Stable Diffusion 1.x-2.x一致,具备文生图(txt2img)、图生图(img2img)、图像inpainting等能力。在Base模型之后,级联了Refiner模型,对Base模型生成的图像Latent特征进行精细化提升,其本质上是在做图生图的工作。

  • SDXL Base模型由U-Net、VAE以及CLIP Text Encoder(两个)三个模块组成,
  • SDXL Refiner模型同样由U-Net、VAE和CLIP Text Encoder(一个)三个模块组成
    在这里插入图片描述

1.3 VAE模型

1.VAE基本介绍

Stable Diffusion XL依旧是基于Latent的扩散模型,所以VAE的Encoder和Decoder结构依旧是Stable Diffusion XL高效提取图像Latent特征和图像像素级重建的关键一招。

  • 当输入是图片时,SDXL和SD一样,首先会使用VAE的Encoder结构将输入图像转换为Latent特征,然后U-Net不断对Latent特征进行优化,最后使用VAE的Decoder结构将Latent特征重建出像素级图像。除了提取Latent特征和图像的像素级重建外,VAE还可以改进生成图像中的高频细节,小物体特征和整体图像色彩。

  • 当Stable Diffusion XL的输入是文字时,这时我们不需要VAE的Encoder结构,只需要Decoder进行图像重建。

Stable Diffusion XL使用了和之前Stable Diffusion系列一样的VAE结构(KL-f8),但在训练中选择了更大的Batch-Size(256 vs 9),并且对模型进行指数滑动平均操作(EMA,exponential moving average),EMA对模型的参数做平均,从而提高性能并增加模型鲁棒性。

2. VAE基本模型结构

在这里插入图片描述
SDXL VAE模型中有三个基础组件

  • GSC组件:GroupNorm+SiLU+Conv
  • Downsample组件:Padding+Conv
  • Upsample组件:Interpolate+Conv

同时SDXL VAE模型还有两个核心组件:ResNetBlock模块和SelfAttention模型,两个模块的结构如上图所示。

SDXL VAE Encoder部分包含了三个DownBlock模块、一个ResNetBlock模块以及一个MidBlock模块,将输入图像压缩到Latent空间,转换成为Gaussian Distribution。

而VAE Decoder部分正好相反,其输入Latent空间特征,并重建成为像素级图像作为输出。其包含了三个UpBlock模块、一个ResNetBlock模块以及一个MidBlock模块。

3.VAE的训练

损失函数方面,使用了久经考验的生成领域“交叉熵”—感知损失(perceptual loss)以及L1回归损失来约束VAE的训练过程。
Stable Diffusion XL的VAE是从头开始训练的。

  • SD-VAE 2.x,SD-VAE 1.x,SDXL-VAE模型结构是一样的

  • 不同点在于SD-VAE 2.x是基于SD-VAE 1.x微调训练了Decoder部分,同时保持Encoder部分权重不变,使他们有相同的Latent特征分布,所以SD 1.x和SD 2.x的VAE模型是互相兼容的。而SDXL-VAE是重新从头开始训练的,所以其Latent特征分布与之前的两者不同。

  • 由于Latent特征分布产生了变化,SDXL VAE的缩放系数也产生了变化。VAE在将Latent特征送入U-Net之前,需要对Latent特征进行缩放让其标准差尽量为1,之前的Stable Diffusion系列采用的缩放系数为0.18215,由于Stable Diffusion XL的VAE进行了全面的重训练,所以缩放系数重新设置为0.13025。

注意:由于缩放系数的改变,Stable Diffusion XL VAE模型与之前的Stable Diffusion系列并不兼容。

与此同时,与Stable Diffusion一样,VAE模型在Stable Diffusion XL中除了能进行图像压缩和图像重建的工作外,通过切换不同微调训练版本的VAE模型,能够改变生成图片的细节与整体颜色(更改生成图像的颜色表现,类似于色彩滤镜)。

1.4 U-Net模型(Base部分)

1. 十四个基本模块概述

在这里插入图片描述
上图中包含Stable Diffusion XL Base U-Net的十四个基本模块:

1. GSC模块:Stable Diffusion Base XL U-Net中的最小组件之一,由GroupNorm+SiLU+Conv三者组成。
2. DownSample模块:Stable Diffusion Base XL U-Net中的下采样组件,使用了Conv(kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))进行采下采样。
3. UpSample模块:Stable Diffusion Base XL U-Net中的上采样组件,由插值算法(nearest)+Conv组成。
4. ResNetBlock模块:借鉴ResNet模型的“残差结构”,让网络能够构建的更深的同时,将Time Embedding信息嵌入模型。
5. CrossAttention模块:将文本的语义信息与图像的语义信息进行Attention机制,增强输入文本Prompt对生成图片的控制。
6. SelfAttention模块:SelfAttention模块的整体结构与CrossAttention模块相同,这是输入全部都是图像信息,不再输入文本信息。
7. FeedForward模块:Attention机制中的经典模块,由GeGlU+Dropout+Linear组成。
8. BasicTransformer Block模块:由LayerNorm+SelfAttention+CrossAttention+FeedForward组成,是多重Attention机制的级联,并且每个Attention机制都是一个“残差结构”。通过加深网络和多Attention机制,大幅增强模型的学习能力与图文的匹配能力。
9. SDXL_Spatial Transformer_X模块:由GroupNorm+Linear+X个BasicTransformer Block+Linear构成,同时ResNet模型的“残差结构”依旧没有缺席。
10. SDXL_DownBlock模块:由ResNetBlock+ResNetBlock+DownSample组成。
11. SDXL_UpBlock_X模块:由X个ResNetBlock模块组成。
12. CrossAttnDownBlock_X_K模块:是Stable Diffusion XL Base U-Net中Encoder部分的主要模块,由K个(ResNetBlock模块+SDXL_Spatial Transformer_X模块)+DownSample模块组成。
13. CrossAttnUpBlock_X_K模块:是Stable Diffusion XL Base U-Net中Decoder部分的主要模块,由K个(ResNetBlock模块+SDXL_Spatial Transformer_X模块)+UpSample模块组成。
14. CrossAttnMidBlock模块:是Stable Diffusion XL Base U-Net中Encoder和ecoder连接的部分,由ResNetBlock+SDXL_Spatial Transformer_10+ResNetBlock组成。
在这里插入图片描述
Stable Diffusion XL,U-Net模型(Base部分)参数量就增加到2.6B,参数量增加幅度达到了3倍左右

整个新的SDXL Base U-Net设计思想也让SDXL的Base出图分辨率提升至1024x1024。在参数保持一致的情况下,Stable Diffusion XL生成图片的耗时只比Stable Diffusion多了20%-30%之间,这个拥有2.6B参数量的模型已经足够伟大。

在SDXL U-Net的Encoder结构中,包含了两个CrossAttnDownBlock结构和一个SDXL_DownBlock结构;在Decoder结构中,包含了两个CrossAttnUpBlock结构和一个SDXL_UpBlock结构;与此同时,Encoder和Decoder中间存在Skip Connection,进行信息的传递与融合。

2. SDXL_Spatial Transformer_X模块

增加的**SDXL_Spatial Transformer_X模块(主要包含Self Attention + Cross Attention + FeedForward)**数量占新增参数量的主要部分,上表中已经用红色框圈出。U-Net的Encoder和Decoder结构也从原来的4stage改成3stage([1,1,1,1] -> [0,2,10]),说明SDXL只使用两次下采样和上采样,而之前的SD系列模型都是三次下采样和上采样。

比起Stable DiffusionV1/2,Stable Diffusion XL在第一个stage中不再使用Spatial Transformer Blocks,而在第二和第三个stage中大量增加了Spatial Transformer Blocks(分别是2和10),那么这样设计有什么好处呢?

  • 首先,在第一个stage中不使用SDXL_Spatial Transformer_X模块,可以明显减少显存占用和计算量
  • 然后在第二和第三个stage这两个维度较小的feature map上使用数量较多的SDXL_Spatial Transformer_X模块,能在大幅提升模型整体性能(学习能力和表达能力)的同时,优化了计算成本
    从上面讲到的十四个基本模块中可以看到,BasicTransformer Block模块是整个框架的基石,由SelfAttention,CrossAttention和FeedForward三个组件构成,并且使用了循环残差模式,让SDXL Base U-Net不仅可以设计的更深,同时也具备更强的文本特征和图像体征的学习能力。

3. CrossAttention模块细节

Stable Diffusion XL中的Text Condition信息由两个Text Encoder提供(OpenCLIP ViT-bigG和OpenAI CLIP ViT-L),通过Cross Attention组件嵌入,作为K Matrix和V Matrix。与此同时,图片的Latent Feature作为Q Matrix

但是大家知道Text Condition是三维的,而Latent Feature是四维的,那它们是怎么进行Attention机制的呢?

其实在每次进行Attention机制前,我们需要将Latent Feature从[batch_size,channels,height,width]转换到[batch_size,height*width,channels] ,这样就变成了三维特征,就能够和Text Condition做CrossAttention操作。

在完成CrossAttention操作后,我们再将Latent Feature从[batch_size,height*width,channels]转换到[batch_size,channels,height,width] ,这样就又重新回到原来的维度。

还有一点是Text Condition如何跟latent Feature大小保持一致呢?因为latent embedding不同位置的H和W是不一样的,但是Text Condition是从文本中提取的,其H和W是固定的。这里在CorssAttention模块中有一个非常巧妙的点,那就是在不同特征做Attention操作前,使用Linear层将不同的特征的尺寸大小对齐。

1.5 CLIP Text Encoder模型

CLIP模型主要包含Text Encoder和Image Encoder两个模块,在Stable Diffusion XL中,和之前的Stable Diffusion系列一样,只使用Text Encoder模块从文本信息中提取Text Embeddings。

不过Stable Diffusion XL与之前的系列相比,使用了两个CLIP Text Encoder,分别是OpenCLIP ViT-bigG(1.39G)和OpenAI CLIP ViT-L(246M),从而大大增强了Stable Diffusion XL对文本的提取和理解能力。

1.6 Refiner模型

Stable Diffusion XL开始使用级联策略,在U-Net(Base)之后,级联Refiner模型,进一步提升生成图像的细节特征与整体质量。

由于已经有U-Net(Base)模型生成了图像的Latent特征,所以Refiner模型的主要工作是在Latent特征进行小噪声去除和细节质量提升。

在这里插入图片描述
Refiner模型和Base模型一样是基于Latent的扩散模型,也采用了Encoder-Decoder结构,和U-Net兼容同一个VAE模型,不过Refiner模型的Text Encoder只使用了OpenCLIP ViT-bigG。
在这里插入图片描述
在Stable Diffusion XL推理阶段,输入一个prompt,通过VAE和U-Net(Base)模型生成Latent特征,接着给这个Latent特征加一定的噪音,在此基础上,再使用Refiner模型进行去噪,以提升图像的整体质量与局部细节。

二. Stable Diffusion XL训练技巧和细节

Stable Diffusion XL在训练阶段提出了很多Tricks,包括图像尺寸条件化策略,图像裁剪参数条件化以及多尺度训练。这些Tricks都有很好的通用性和迁移性,能普惠其他的生成式模型。

2.1 图像尺寸条件化

Stable Diffusion的训练过程:
主要分成两个阶段,一个是在256x256的图像尺寸上进行预训练,然后在512x512的图像尺寸上继续训练。

而这两个阶段的训练过程都要对最小图像尺寸进行约束。第一阶段中,会将尺寸小于256x256的图像舍弃;同样的,在第二阶段,会将尺寸小于512x512的图像筛除。这样的约束会导致训练数据中的大量数据被丢弃,从而很可能导致模型性能和泛化性的降低。
传统解决方式:
针对上述数据集利用率的问题,常规思路可以借助超分模型将尺寸过小的图像放大。但是面对对于图像尺寸过小的场景,目前的超分模型可能会在对图像超分的同时会引入一些噪声伪影,影响模型的训练,导致生成一些模糊的图像。
Stable Diffusion XL解决方式:
Stable Diffusion XL为了在解决数据集利用率问题的同时不引入噪声伪影,将U-Net(Base)模型与原始图像分辨率相关联,核心思想是将输入图像的原始高度和宽度作为额外的条件嵌入U-Net模型中,表示为 C ( s i z e ) = ( h e i g h t , w i d t h ) C_(size) = (height, width) C(size)=(height,width)
。height和width都使用傅里叶特征编码进行独立嵌入,然后将特征concat后加在Time Embedding上,将图像尺寸引入训练过程。这样以来,模型在训练过程中能够学习到图像的原始分辨率信息,从而在推理生成阶段更好地适应不同尺寸的图像生成,而不会产生噪声伪影的问题。

2.2 图像裁剪参数条件化

Stable Diffusion预处理图像
Stable Diffusion系列模型,由于需要输入固定的图像尺寸用作训练,很多数据在预处理阶段会被裁剪。生成式模型中典型的预处理方式是先调整图像尺寸,使得最短边与目标尺寸匹配,然后再沿较长边对图像进行随机裁剪或者中心裁剪。虽然裁剪是一种数据增强方法,但是训练中对图像裁剪导致的图像特征丢失,可能会导致模型在图像生成阶段出现不符合训练数据分布的特征。

其实之前NovelAI就发现了这个问题,并提出了基于分桶(Ratio Bucketing)的多尺度训练策略,其主要思想是先将训练数据集按照不同的长宽比(aspect ratio)进行分桶(buckets)。在训练过程中,每次在buckets中随机选择一个bucket并从中采样Batch个数据进行训练。将数据集进行分桶可以大量较少裁剪图像的操作,并且能让模型学习多尺度的生成能力;但相对应的,预处理成本大大增加,特别是数据量级较大的情况下。

并且尽管数据分桶成功解决了数据裁剪导致的负面影响,但如果能确保数据裁剪不把负面影响引入生成过程中,裁剪这种数据增强方法依旧能给模型增强泛化性能。
Stable Diffusion XL图像裁剪参数条件化策略
Stable Diffusion XL使用了一种简单而有效的条件化方法,即图像裁剪参数条件化策略。其主要思想是在加载数据时,将左上角的裁剪坐标通过傅里叶编码并嵌入U-Net(Base)模型中,并与原始图像尺寸一起作为额外的条件嵌入U-Net模型,从而在训练过程中让模型学习到对“图像裁剪”的认识。
在这里插入图片描述

2.3 多尺度训练

Stable Diffusion XL采用了多尺度训练策略,这个在传统深度学习时代头牌模型YOLO系列中常用的增强模型鲁棒性与泛化性策略,终于在AIGC领域应用并固化了,并且Stable Diffusion XL在多尺度的技术上,增加了分桶策略

Stable Diffusion XL首先在256x256和512x512的图像尺寸上分别预训练600000步和200000步(batch size = 2048),总的数据量约等于 (600000 + 200000) x 2048 = 16.384亿。

接着Stable Diffusion XL在1024x1024的图像尺寸上采用多尺度方案来进行微调,并将数据分成不同纵横比的桶(bucket),并且尽可能保持每个桶的像素数接近1024×1024,同时相邻的bucket之间height或者width一般相差64像素左右,Stable Diffusion XL的具体分桶情况如下图所示:
在这里插入图片描述

其中Aspect Ratio = Height / Width,表示高宽比。

在训练过程中,一个Batch从一个桶里的图像采样,并且我们在每个训练步骤中在不同的桶大小之间交替切换。除此之外,aspect ratio也会作为条件嵌入到U-Net(Base)模型中,让模型能够更好地学习到“多尺度特征”。完成了多尺度微调后,Stable Diffusion XL就可以进行不同aspect ratio的AI绘画了,不过推荐生成尺寸的base为1024x1024。

2.4 使用Offset Noise

在SDXL进行微调时,使用了Offset Noise操作,能够让SDXL生成的图像有更高的色彩自由度(纯黑或者纯白背景的图像)。SD v1和SD v2一般只能生成中等亮度的图片,即生成平均值相对接近 0.5 的图像(全黑图像为 0,全白图像为 1),之所以会出现这个问题,是因为SD模型训练和推理过程的不一致造成的

SD模型在训练中进行noise scheduler流程并不能将图像完全变成随机高斯噪声,但是推理过程中,SD模型是从一个随机高斯噪声开始生成的,因此就会存在训练与推理的噪声处理过程不一致。

Offset Noise操作是解决这个问题的一种直观并且有效的方法,我们只需要在SD模型的微调训练时,把额外在从高斯分布中采样的偏置噪声引入图片添加噪声的过程中,这样就对图像的色彩均值造成了破坏,从而提高了SDXL生成图像的"泛化性能"

感谢
https://zhuanlan.zhihu.com/p/643420260

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/289047.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[Linux_IMX6ULL驱动开发]-基础驱动

驱动的含义 如何理解嵌入式的驱动呢,我个人认为,驱动就是嵌入式上层应用操控底层硬件的桥梁。因为上层应用是在用户态,是无法直接操控底层的硬件的。我们需要利用系统调用(open、read、write等),进入内核态…

tensorflow安装以及在Anaconda中安装使用

在遥感领域进行深度学习时,通常使用python进行深度学习,会使用到tensorflow的安装,今天小编就给大家介绍如何在Anaconda中安装tensorflow! 下载Anaconda Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open…

【数据分享】1981-2023年全国各城市逐日、逐月、逐年平均气温(shp格式)

气象数据是我们在各种研究中都会使用到的基础数据,之前我们分享了Excel格式的1981-2023年全国各城市的逐日、逐月、逐年平均气温数据(可查看之前的文章获悉详情)。 好多小伙伴拿到数据后问我们有没有GIS矢量格式的该数据,我们专门…

C语言二叉树和堆(个人笔记)

二叉树和堆 二叉树1二叉树的概念和结构1.1特殊的二叉树1.2二叉树的性质(规定根节点的层数为1)1.3二叉树的存储结构 2.二叉树的顺序结构和实现2.1二叉树的顺序结构2.2堆的概念和结构2.3堆的实现2.4堆的应用2.4.1堆排序 2.5TOP-K问题 3.二叉树的遍历4.二叉…

国赛大纲解读

1. 第一部分,是针对5G基础知识的掌握,第二部分是人工智能基本算法的掌握,就是人工智能的应用,用5G+人工智能(AI算法)进行网络优化的问题,要有网络优化的基础知识,比如说:某个区域的覆盖问题,覆盖特别差,但有数据,覆盖电频,srp值这些数据给你,根据数据来判断是…

openssl AF_ALG引擎使用

cmd AF_ALG是Linux提供的一种虚拟接口,用于访问内核中的加密算法。在Linux中,可以使用AF_ALG接口配合加密算法框架(Crypto API)来进行加密操作。 以下是一个使用AF_ALG和openssl进行加密操作的例子: # 加密 openssl…

我的编程之路:从非计算机专业到Java开发工程师的成长之路 | 学习路线 | Java | 零基础 | 学习资源 | 自学

小伙伴们好,我是「 行走的程序喵」,感谢您阅读本文,欢迎三连~ 😻 【Java基础】专栏,Java基础知识全面详解:👉点击直达 🐱 【Mybatis框架】专栏,入门到基于XML的配置、以…

Win10或Win11系统下西门子TIA博途运行时卡顿缓慢的解决办法总结

Win10或Win11系统下西门子TIA博途运行时卡顿缓慢的解决办法总结 首先,可以看下TIA PORTAL V19的安装条件: 处理器:Intel i5-8400H,2.5-4.2GHZ,4核以上+超线程技术,智能缓存; 内存:至少16GB,大型项目需要32GB 硬盘:必须SSD固态硬盘,至少50GB的可用空间 图形分辨率:1…

PostgreSQL FDW(外部表) 简介

1、FDW: 外部表 背景 提供外部数据源的透明访问机制。PostgreSQL fdw(Foreign Data Wrapper)是一种外部访问接口,可以在PG数据库中创建外部表,用户访问的时候与访问本地表的方法一样,支持增删改查。 而数据则是存储在外部,外部可以是一个远程的pg数据库或者其他数据库(…

LVS负载均衡-DR模式配置

LVS:Linux virtual server ,即Linux虚拟服务器 LVS自身是一个负载均衡器(Director),不直接处理请求,而是将请求转发至位于它后端的真实服务器real server上。 LVS是四层(传输层 tcp/udp)负载均衡…

数据结构——二叉搜索树详解

一、二叉搜索树定义 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树: 1.非空左子树上所有节点的值都小于根节点的值。 2.非空右子树上所有节点的值都大于根节点的值。 3.左右子树也都为二叉搜索树。 如下图所示&#xff1a…

振弦采集仪在预防地质灾害监测中的作用与应用前景

振弦采集仪在预防地质灾害监测中的作用与应用前景 振弦采集仪(String Vibrating Sensor,简称SVM)是一种用于地质灾害监测的重要仪器,它通过测量地面振动信号来预测和预警地质灾害的发生。SVM的作用在于提供实时、准确的地质灾害监…

vue3+ts+element home页面侧边栏+头部组件+路由组件组合页面教程

文章目录 效果展示template代码script代码样式代码 效果展示 template代码 <template><el-container class"home"><el-aside class"flex" :style"{ width: asideDisplay ? 70px : 290px }"><div class"aside-left&q…

深度学习语义分割篇——DeepLabV1原理详解篇

&#x1f34a;作者简介&#xff1a;秃头小苏&#xff0c;致力于用最通俗的语言描述问题 &#x1f34a;专栏推荐&#xff1a;深度学习网络原理与实战 &#x1f34a;近期目标&#xff1a;写好专栏的每一篇文章 &#x1f34a;支持小苏&#xff1a;点赞&#x1f44d;&#x1f3fc;、…

数据库是怎么做到事务回滚的呢?

数据库实现事务回滚的原理涉及到数据库管理系统&#xff08;DBMS&#xff09;如何维护事务的一致性和持久性。 基本原理&#xff1a; ACID属性&#xff1a;事务的原子性&#xff08;Atomicity&#xff09;、一致性&#xff08;Consistency&#xff09;、隔离性&#xff08;Iso…

【Linux】从零开始认识进程 — 中下篇

送给大家一句话&#xff1a; 人一切的痛苦&#xff0c;本质上都是对自己无能的愤怒。而自律&#xff0c;恰恰是解决人生痛苦的根本途径。—— 王小波 从零认识进程 1 进程优先级1.1 什么是优先级1.2 为什么要有优先级1.3 Linux优先级的特点 && 查看方式1.4 其他概念 2…

c++的学习之路:5、类和对象(1)

一、面向对象和面向过程 在说这个定义时&#xff0c;我就拿c语言举例&#xff0c;在c语言写程序的时候&#xff0c;基本上就是缺什么函数&#xff0c;就去手搓一个函数&#xff0c;写的程序也只是调用函数的&#xff0c;而c就是基于面向对象的开发&#xff0c;他关注的不再是单…

picgo启动失败解决

文章目录 报错信息原因分析解决方案 报错信息 打开Picgo&#xff0c;显示报错 A JavaScript error occurred in the main process Uncaught Exception: Error:ENOENT:no such file or directory,open ‘C:\Users\koko\AppData\Roaming\picgo\data.json\picgo.log’ 原因分析…

[iOS]GCD(一)

[iOS]GCD(一) 文章目录 [iOS]GCD(一)GCD的概要GCD的APIDispatch Queuedispatch_queue_createMain Dispatch Queue和 Global Dispatch Queue.Main Dispatch_set_target_queuedispatch_afterDispatch Groupdispatch_barrier_asyncdispatch_applydispatch_applydispatch_suspend/d…

【功能实现】新年贺卡(蓝桥)

题目分析&#xff1a; 想要实现一个随机抽取功能 功能拆解&#xff1a;题目给了数组&#xff0c;我们采用生成随机数的方式&#xff0c;随机数作为数组的索引值访问数组的值。 并返回获取到的值&#xff0c;将获取到的值插入到页面中。 document.addEventListener(DOMConten…