实时数仓之实时数仓架构(Hudi)

        目前比较流行的实时数仓架构有两类,其中一类是以Flink+Doris为核心的实时数仓架构方案;另一类是以湖仓一体架构为核心的实时数仓架构方案。本文针对Flink+Hudi湖仓一体架构进行介绍,这套架构的特点是可以基于一套数据完全实现Lambda架构。实时数仓架构图如下:

  • 技术框架

    • Kafka:用于接入数据源;

    • Flink CDC:如果直接接入业务数据源可以考虑CDC方式,如果通过Kafka缓冲接入业务数据可以忽略;

    • Flink:用于数据ETL,包括接入数据、处理数据及输出数据全链路数据计算任务;

    • Spark:用于数据ETL,包括处理数据及输出数据全链路数据计算任务;

    • Hudi:湖仓一体数据管理框架,用来管理模型数据,包括ODS/DWD/DWS/DIM/ADS等;

    • Doris:OLAP引擎,同步数仓结果模型,对外提供数据服务支持;

    • Hbase:用来存储维表信息,维表数据来源一部分有Flink加工实时写入,另一部分是从Spark任务生产,其主要作用用来支持Flink ETL处理过程中的Lookup Join功能。这里选用Hbase原因主要因为Table的Hbase Connector支持异步IO功能。

    • Hera:调度系统,用来调度离线Spark任务;

    • StreamX:Flink任务管理工具,用于部署管理以及监控Flink实时任务;

  • 数仓架构

    采用维度模型标准三层架构,ODS/DWD/DWS/DIM/ADS,分层架构符合Kimball维度模型建仓指导原则。

    • ODS层:增量方式接入业务数据和日志数据,ODS层分区保留当日增量结果,包含备份和支持下游数据源功能;

    • DIM层:维表加工分为几种情况:

      1. 静态维表/转码表/字典表这些日常不怎么变化的直接加载到Hudi即可,用于flink数据处理;如果应用端需要依赖这类表,Doris也得同步存储一份;

      2. 普通维表数据由Flink完成实时任务加工,由Spark任务完成离线数据修复,同时为了维表Join,维表还需要同步hbase一份(原因可以参考笔者另外一篇博客《Flink基于Hudi维表Join缺陷分析及解决方案》),同时结果同步Doris,供终端引用。

    • DWD层:维度模型设计,采用事务表建模(目的尽量将单表数据设计关系降低到最低)、易于ETL实现;实时数据装载由Flink驱动,通过对ODS流进行Join、聚合和转行操作、以及对外部表以Lookup Join方式清洗数据(切记不能过分冗余维度数据,底层对数据做分离是核心设计思想,冗余越是过分、维护成本越高),结果保存Hudi;离线任务修复由Spark实现,操作同一份数据,ETL要做好时间限制条件,避免离线任务影响实时任务,同时结果数据同步Doris,供终端引用;

    • DWS层:非必要不要轻易跨业务过程合并数据,其他参考DWD设计思路。

    • ADS层:面向业务场景编程,一套数据产品对应自己的一套数据,这里一般有两种实现思路可以参考:

      1. Flink/Spark驱动读取DWD/DWS/DIM数据加工ADS结果表,数据写入Hudi,同步Doris供下游引用;

      2. StarRocks高版本支持物化视图功能,可以借助物化视图实现ADS层;

    总结:无论是实时数仓还是离线数仓建设,问题根源一般来自于模型设计的不合理,要知道数据模型才是维度建模的灵魂,Kimball老爷子写了几百万字的著作,主要描述的是数据建模的思想。

  • Flink+Hudi实时数仓架构缺点

    基于Hudi湖仓一体架构虽然实时性比离线数仓要高很多,但是对比纯实时数仓而言,其延迟性一般在分钟级(到终端引用可能要延迟10~15分钟时间),对于某些实时性要求较高场景并不适合。

  • 常见问题

    • 数据源保序任务:一般来说接入数据源很难完全避免乱序场景发生,这种情况有两种方案可以参考:

      1. 事实表按照业务过程建设,一般业务过程数据不存在更新所以单个key也不存在重复发射的情况,即使存在数据重发,也可以通过ETL规则提前规避掉,这种思路对于下游数据任务加工都比较友好。

      2. 针对接入数据按照update_time保序,由于接入Append-Only流数据,通过保序任务会变成Retract流,这样后续依赖也要考虑回撤场景带来的问题。具体可以参考作者关于乱序场景的几篇文章。

    • 实时UV/PV计算:去重计数指标一直依赖都是数据仓库设计领域的难题,由于本架构采用了doris,所以这部分指标加工如果没有特殊要求可以通过doris的bitmap实现;另一种实现思路是借助redis hyperloglog(由于改架构避免不了Spark修复数据情况,所以一定场景下是可以接受实时数据差异的)能力,通过自定义UDF函数实现UV计算。这两种思路是实时UV常用的解决思路。

    • 历史实时数据对齐:如果底层面向业务过程设计,那么根据合理的时间戳属性,是可以严格区分历史数据和实时数据区别的,这种情况可以考虑通过离线数据补全缺失数据。这也侧面说明了模型设计的能力才是数据仓库的核心技能,其他方面的技能对于数仓建设的正面影响加到一起也不及模型设计能力的一部分。

    • Flink基于Hudi维表Join存在陷阱,详情请参看笔者另一篇博客《Flink基于Hudi维表Join缺陷分析及解决方案》。

  • 总结

            Flink和Hudi组合实现湖仓一体架构,目前也是业界讨论比较多的一套架构方案,这也得益于Flink和Hudi社区的快速发展,对于组件的特性支持越来越丰富。对于文中涉及到的一些技术点并没有展开发挥,这部分内容陆续会在博客的其他文章中继续讨论。如果你对实时数仓架构有独到的见解,欢迎留言讨论。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/289841.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LockSupport与线程中断机制

中断机制是个协商机制 Interrupt(): 将中断状态设置为true Interrupted():(静态方法) 1.返回当前线程的中断状态 2.将中断状态清零并设置为false is Interrupted(): 判断当前线程是否被中断 如何停止中断运行中的线程? 一个线程不应该由…

电脑关机速度很慢怎么解决?

给电脑关机,总是要很久才完全关闭。这是因为计算机运行了太长时间,并且打开的程序太多,则关闭时间超过十秒钟,这是正常的现象。还有就是计算机升级或补丁程序更新也将导致计算机缓慢关闭。此时,建议耐心等待关闭完成。…

Redis、Mysql双写情况下,如何保证数据一致

Redis、Mysql双写情况下,如何保证数据一致 场景谈谈数据一致性三个经典的缓存模式Cache-Aside Pattern读流程写流程 Read-Through/Write-Through(读写穿透)Write behind (异步缓存写入) 操作缓存的时候,删除…

实现DevOps需要什么?

实现DevOps需要什么? 硬性要求:工具上的准备 上文提到了工具链的打通,那么工具自然就需要做好准备。现将工具类型及对应的不完全列举整理如下: 代码管理(SCM):GitHub、GitLab、BitBucket、SubV…

探索智慧农业精准除草,基于高精度YOLOv5全系列参数【n/s/m/l/x】模型开发构建农田作物场景下杂草作物分割检测识别分析系统

智慧农业是未来的一个新兴赛道,随着科技的普及与落地应用,会有更加广阔的发展空间,关于农田作物场景下的项目开发实践,在我们前面的博文中也有很堵相关的实践,单大都是偏向于目标检测方向的,感兴趣可以自行…

百度智能云千帆,产业创新新引擎

本文整理自 3 月 21 日百度副总裁谢广军的主题演讲《百度智能云千帆,产业创新新引擎》。 各位领导、来宾、媒体朋友们,大家上午好。很高兴今天在石景山首钢园,和大家一起沟通和探讨大模型的发展趋势,以及百度最近一段时间的思考和…

牛客NC26 括号生成【中等 递归 Java,Go,PHP】

题目 题目链接: https://www.nowcoder.com/practice/c9addb265cdf4cdd92c092c655d164ca 思路 答案链接:https://www.lintcode.com/problem/427/solution/16924 参考答案Java import java.util.*;public class Solution {/*** 代码中的类名、方法名、参…

Llama模型下载

最近llama模型下载的方式又又变了,所以今天简单更新一篇文章,关于下载的,首先上官网,不管在哪里下载你都要去官网登记一下信息:https://llama.meta.com/llama2 然后会出现下面的信息登记网页: 我这里因为待…

软件工程学习笔记12——运行维护篇

运行维护篇 一、版本发布1、关于软件版本2、版本发布前,做好版本发布的规划3、规范好发布流程,保障发布质量 二、DevOps工程师1、什么是 DevOps 三、线上故障1、遇到线上故障,新手和高手的差距在哪里2、大厂都是怎么处理线上故障的 四、日志管…

MGRE实验

MGRE实验 1、实验要求 2、实验分析 IP地址分类 私网IP:192.168.1.0等隧道IP:192.168.5.0和192.168.6.0公网IP:15.0.0.1等 配置IP地址 配置acl访问控制列表 用于将内部网络中的私有IP地址转换为公共IP地址,以实现与外部网络的通…

helm 部署 Kube-Prometheus + Grafana + 钉钉告警部署 Kube-Prometheus

背景 角色IPK8S 版本容器运行时k8s-master-1172.16.16.108v1.24.1containerd://1.6.8k8s-node-1172.16.16.109v1.24.1containerd://1.6.8k8s-node-2172.16.16.110v1.24.1containerd://1.6.8 安装 kube-prometheus mkdir -p /data/yaml/kube-prometheus/prometheus &&…

集成在零售行业的应用

随着科技的飞速发展,集成化应用正在各行各业中发挥着越来越重要的作用。在零售行业,集成技术的广泛应用不仅提升了运营效率,还优化了顾客体验,推动了行业的转型升级。本文将深入探讨集成在零售行业的应用,并展望其未来…

深度学习论文: Attention is All You Need及其PyTorch实现

深度学习论文: Attention is All You Need及其PyTorch实现 Attention is All You Need PDF:https://arxiv.org/abs/1706.03762.pdf PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks 大多数先进的神经序列转换模型采用编码器-解码器结构,其中编码器将…

MySQL 8:GROUP BY 问题解决 —— 怎么关闭ONLY_FULL_GROUP_BY (详细教程)

在使用 GROUP BY 时,我们可能会遇到以下报错: Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column …… 这是因为我们在select语句中所查询的列并不被group by后面接的列所包含。 对于GROUP BY聚合操作&#xf…

flink on yarn-per job源码解析、flink on k8s介绍

Flink 架构概览–JobManager JobManager的功能主要有: 将 JobGraph 转换成 Execution Graph,最终将 Execution Graph 拿来运行Scheduler 组件负责 Task 的调度Checkpoint Coordinator 组件负责协调整个任务的 Checkpoint,包括 Checkpoint 的开始和完成通过 Actor System 与 …

8、鸿蒙学习-HAR

HAR(Harmony Archive)是静态共享包,可以包含代码、C库、资源和配置文件。通过HAR可以实现多个模块或多个工程共享ArkUI组件、资源等相关代码。HAR不同于HAP,不能独立安装运行在设备上。只能作为应用模块的依赖项被引用。 一、创建…

边缘计算AI盒子目前支持的AI智能算法、视频智能分析算法有哪些,应用于大型厂矿安全生产风险管控

一、前端设备实现AI算法 主要是基于安卓的布控球实现,已有的算法包括: 1)人脸;2)车牌;3)是否佩戴安全帽;4)是否穿着工装; 可以支持定制开发 烟雾&#xf…

20221124 kafka实时数据写入Redis

一、上线结论 实现了将用户线上实时浏览的沉浸式视频信息,保存在Redis中这样一个功能。为实现沉浸式视频离线推荐到实时推荐提供了强有力的支持。目前只是应用在沉浸式场景,后续也能扩展到其他所有场景。用于两个场景:(1&#xf…

Apache Hive的基本使用语法(二)

Hive SQL操作 7、修改表 表重命名 alter table score4 rename to score5;修改表属性值 # 修改内外表属性 ALTER TABLE table_name SET TBLPROPERTIES("EXTERNAL""TRUE"); # 修改表注释 ALTER TABLE table_name SET TBLPROPERTIES (comment new_commen…

掌握Flutter底部导航栏:畅游导航之旅

1. 引言 在移动应用开发中,底部导航栏是一种常见且非常实用的用户界面元素。它提供了快速导航至不同功能模块或页面的便捷方式,使用户可以轻松访问应用程序的各个部分。在Flutter中,底部导航栏也是一项强大的功能,开发者可以利用…