探索智慧农业精准除草,基于高精度YOLOv5全系列参数【n/s/m/l/x】模型开发构建农田作物场景下杂草作物分割检测识别分析系统

智慧农业是未来的一个新兴赛道,随着科技的普及与落地应用,会有更加广阔的发展空间,关于农田作物场景下的项目开发实践,在我们前面的博文中也有很堵相关的实践,单大都是偏向于目标检测方向的,感兴趣可以自行移步阅读即可:

《自建数据集,基于YOLOv7开发构建农田场景下杂草检测识别系统》 

《轻量级目标检测模型实战——杂草检测》

《激光除草距离我们实际的农业生活还有多远,结合近期所见所感基于yolov8开发构建田间作物杂草检测识别系统》

《基于yolov5的农作物田间杂草检测识别系统》

《AI助力智慧农业,基于YOLOv3开发构建农田场景下的庄稼作物、田间杂草智能检测识别系统》

《AI助力智慧农业,基于YOLOv4开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》 

《AI助力智慧农业,基于YOLOv5全系列模型【n/s/m/l/x】开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》

 《AI助力智慧农业,基于YOLOv6最新版本模型开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》

《AI助力智慧农业,基于YOLOv7【tiny/yolov7/yolov7x】开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》 

《AI助力智慧农业,基于YOLOv8全系列模型【n/s/m/l/x】开发构建不同参数量级的识别系统》

《AI助力智慧农业,基于DETR【DEtection TRansformer】模型开发构建田间作物场景下庄稼作物、杂草检测识别系统》

《助力智能化农田作物除草,基于轻量级YOLOv8n开发构建农田作物场景下玉米苗、杂草检测识别分析系统》

《助力智能化农田作物除草,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建农田作物场景下玉米苗、杂草检测识别分析系统》

《助力智能化农田作物除草,基于DETR(DEtection TRansformer)模型开发构建农田作物场景下玉米苗、杂草检测识别分析系统》

《助力智能化农田作物除草,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建农田作物场景下玉米苗、杂草检测识别分析系统》

《助力智能化农田作物除草,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建农田作物场景下玉米苗、杂草检测识别分析系统》

《助力智能化农田作物除草,基于YOLOv6全系列【n/s/m/l】参数模型开发构建农田作物场景下玉米苗、杂草检测识别分析系统》

《助力智能化农田作物除草,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建农田作物场景下玉米苗、杂草检测识别分析系统》

还有一些这里就不再一一列举了。

在前文我们已经基于YOLOv8全系列的参数模型开发构建了农田作物场景下的分割系统,感兴趣的话可以自行移步阅读即可:

《探索智慧农业精准除草,基于高精度YOLOv8全系列参数【n/s/m/l/x】模型开发构建农田作物场景下杂草作物分割检测识别分析系统》

本文的主要目的是想要基于YOLOv5全系列的参数模型来开发构建农田作物场景下的杂草作物分割检测识别系统,首先看下实例效果:

接下来简单看下数据集:

这里我直接使用的是官方v7.0分支的代码,项目地址在这里,如下所示:

如果不会使用可以参考我的教程:

《基于yolov5-v7.0开发实践实例分割模型超详细教程》

非常详细的操作实践教程,这里就不再赘述了。

训练数据配置文件如下所示:

#Dataset
path: ./dataset
train: images/train 
val: images/train  
test:  images/train # Classes
names:0: crop1: weed

这里我们一共开发了全系列五款不同参数量级的模型,实验阶段保持相同的参数设置,等待所有模型训练完成之后,我们来对其各个指标进行对比可视化。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【loss曲线】

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

综合对比来看,n系列模型效果最差,s系列效果次之,其余三款模型达到了相近的结果。接下来为了依次对比不同系列的模型详细情况,我们分开每个指标下面每个模型进行可视化,如下:

【F1值】

【loss】

【mAP0.5】

【mAP0.5:0.95】

【Precision】

【Recall】

Batch实例如下:

混淆矩阵如下:

训练可视化如下:

离线推理实例如下:

感兴趣的话也都可以自行动手尝试一下吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/289835.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

百度智能云千帆,产业创新新引擎

本文整理自 3 月 21 日百度副总裁谢广军的主题演讲《百度智能云千帆,产业创新新引擎》。 各位领导、来宾、媒体朋友们,大家上午好。很高兴今天在石景山首钢园,和大家一起沟通和探讨大模型的发展趋势,以及百度最近一段时间的思考和…

牛客NC26 括号生成【中等 递归 Java,Go,PHP】

题目 题目链接: https://www.nowcoder.com/practice/c9addb265cdf4cdd92c092c655d164ca 思路 答案链接:https://www.lintcode.com/problem/427/solution/16924 参考答案Java import java.util.*;public class Solution {/*** 代码中的类名、方法名、参…

Llama模型下载

最近llama模型下载的方式又又变了,所以今天简单更新一篇文章,关于下载的,首先上官网,不管在哪里下载你都要去官网登记一下信息:https://llama.meta.com/llama2 然后会出现下面的信息登记网页: 我这里因为待…

软件工程学习笔记12——运行维护篇

运行维护篇 一、版本发布1、关于软件版本2、版本发布前,做好版本发布的规划3、规范好发布流程,保障发布质量 二、DevOps工程师1、什么是 DevOps 三、线上故障1、遇到线上故障,新手和高手的差距在哪里2、大厂都是怎么处理线上故障的 四、日志管…

MGRE实验

MGRE实验 1、实验要求 2、实验分析 IP地址分类 私网IP:192.168.1.0等隧道IP:192.168.5.0和192.168.6.0公网IP:15.0.0.1等 配置IP地址 配置acl访问控制列表 用于将内部网络中的私有IP地址转换为公共IP地址,以实现与外部网络的通…

helm 部署 Kube-Prometheus + Grafana + 钉钉告警部署 Kube-Prometheus

背景 角色IPK8S 版本容器运行时k8s-master-1172.16.16.108v1.24.1containerd://1.6.8k8s-node-1172.16.16.109v1.24.1containerd://1.6.8k8s-node-2172.16.16.110v1.24.1containerd://1.6.8 安装 kube-prometheus mkdir -p /data/yaml/kube-prometheus/prometheus &&…

集成在零售行业的应用

随着科技的飞速发展,集成化应用正在各行各业中发挥着越来越重要的作用。在零售行业,集成技术的广泛应用不仅提升了运营效率,还优化了顾客体验,推动了行业的转型升级。本文将深入探讨集成在零售行业的应用,并展望其未来…

深度学习论文: Attention is All You Need及其PyTorch实现

深度学习论文: Attention is All You Need及其PyTorch实现 Attention is All You Need PDF:https://arxiv.org/abs/1706.03762.pdf PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks 大多数先进的神经序列转换模型采用编码器-解码器结构,其中编码器将…

MySQL 8:GROUP BY 问题解决 —— 怎么关闭ONLY_FULL_GROUP_BY (详细教程)

在使用 GROUP BY 时,我们可能会遇到以下报错: Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column …… 这是因为我们在select语句中所查询的列并不被group by后面接的列所包含。 对于GROUP BY聚合操作&#xf…

flink on yarn-per job源码解析、flink on k8s介绍

Flink 架构概览–JobManager JobManager的功能主要有: 将 JobGraph 转换成 Execution Graph,最终将 Execution Graph 拿来运行Scheduler 组件负责 Task 的调度Checkpoint Coordinator 组件负责协调整个任务的 Checkpoint,包括 Checkpoint 的开始和完成通过 Actor System 与 …

8、鸿蒙学习-HAR

HAR(Harmony Archive)是静态共享包,可以包含代码、C库、资源和配置文件。通过HAR可以实现多个模块或多个工程共享ArkUI组件、资源等相关代码。HAR不同于HAP,不能独立安装运行在设备上。只能作为应用模块的依赖项被引用。 一、创建…

边缘计算AI盒子目前支持的AI智能算法、视频智能分析算法有哪些,应用于大型厂矿安全生产风险管控

一、前端设备实现AI算法 主要是基于安卓的布控球实现,已有的算法包括: 1)人脸;2)车牌;3)是否佩戴安全帽;4)是否穿着工装; 可以支持定制开发 烟雾&#xf…

20221124 kafka实时数据写入Redis

一、上线结论 实现了将用户线上实时浏览的沉浸式视频信息,保存在Redis中这样一个功能。为实现沉浸式视频离线推荐到实时推荐提供了强有力的支持。目前只是应用在沉浸式场景,后续也能扩展到其他所有场景。用于两个场景:(1&#xf…

Apache Hive的基本使用语法(二)

Hive SQL操作 7、修改表 表重命名 alter table score4 rename to score5;修改表属性值 # 修改内外表属性 ALTER TABLE table_name SET TBLPROPERTIES("EXTERNAL""TRUE"); # 修改表注释 ALTER TABLE table_name SET TBLPROPERTIES (comment new_commen…

掌握Flutter底部导航栏:畅游导航之旅

1. 引言 在移动应用开发中,底部导航栏是一种常见且非常实用的用户界面元素。它提供了快速导航至不同功能模块或页面的便捷方式,使用户可以轻松访问应用程序的各个部分。在Flutter中,底部导航栏也是一项强大的功能,开发者可以利用…

寄主机显示器被快递搞坏了怎么办?怎么破?

大家好,我是平泽裕也。 最近,我在社区里看到很多关于开学后弟弟寄来的电脑显示器被快递损坏的帖子。 看到它真的让我感到难过。 如果有人的数码产品被快递损坏了,我会伤心很久。 那么今天就跟大家聊聊寄快递的一些小技巧。 作为一名曾经的…

在scroll-view中使用input,input键盘弹出时,滚动页面,输入框内容会出现错位问题?

解决办法 <view classpages><view><scroll-view scroll-y"{{sysScroll}}" scroll-top"{{scrollTop}}" class"scroll-hei-2 bg-def">...<input bindfocus"onfocus" bindblur"onblur" placeholder&quo…

如何在Apache Arrow中定位与解决问题

如何在apache Arrow定位与解决问题 最近在执行sql时做了一些batch变更&#xff0c;出现了一个 crash问题&#xff0c;底层使用了apache arrow来实现。本节将会从0开始讲解如何调试STL源码crash问题&#xff0c;在这篇文章中以实际工作中resize导致crash为例&#xff0c;引出如何…

车载以太网AVB交换机 gptp透明时钟 8口 千兆/百兆可切换 SW1100TR

SW1100车载以太网交换机 一、产品简要分析 8端口千兆和百兆混合车载以太网交换机&#xff0c;其中包含2个通道的1000BASE-T1采用罗森博格H-MTD接口&#xff0c;5通道100BASE-T1泰科MATEnet接口和1个通道1000BASE-T标准以太网(RJ45接口)&#xff0c;可以实现车载以太网多通道交…

利用R语言和curl库实现网页爬虫的技术要点解析

R语言简介 R语言是一种自由、跨平台的编程语言和软件环境&#xff0c;专门用于统计计算和数据可视化。它具有丰富的数据处理、统计分析和图形展示功能&#xff0c;被广泛应用于数据科学、机器学习、统计建模等领域。 R语言技术优势 丰富的数据处理功能&#xff1a; R语言拥有…