深入浅出的揭秘游标尺模式与迭代器模式的神秘面纱 ✨

在这里插入图片描述​🌈 个人主页:danci_
🔥 系列专栏:《设计模式》
💪🏻 制定明确可量化的目标,坚持默默的做事。
🚀 转载自:设计模式深度解析:深入浅出的揭秘游标尺模式与迭代器模式的神秘面纱 ✨


深入浅出的揭秘游标尺模式与迭代器模式的神秘面纱

开篇:
    欢迎来到设计模式的神秘世界,今天我们将一起走进两个让编程更加高效的秘密花园:游标尺模式与迭代器模式。🌟 这里不仅是代码的奥秘,而是让你的思维更加清晰,让你的程序更加优雅的关键所在。在这篇文章中,我们将一起拨开重重迷雾,深入这两种模式的精髓,解锁它们真正的魔力。准备好了吗?让我们一起揭开神秘面纱,深入浅出地探索,为什么这两种模式在软件设计中是不可或缺的宝藏!🔥🧩

文章目录

  • Part 1: 游标尺模式 — 比你想象的更有用!📏🌈
    • `定义`
    •  作用</code>
  • Part 2: 迭代器模式 — 走遍无难遍的秘密武器 🔍🚀
    •  定义
    • 作用</code>
  • Part 3: 从游标尺到迭代器 — 解锁编程的无限可能 🗝️🌟
    • 区别</code>
    • 关联与协同应用
      •   `关联:遍历与控制`
      •   `区别:精细控制与通用接口`
      •   `协同应用:灵活性与效率并重`
  • Part 4: 设计场景与问题示例 🤼
    •   `场景`
    •   `Java实现`
  • 🔥 结论与行动呼吁 💖

Part 1: 游标尺模式 — 比你想象的更有用!📏🌈

  
在这里插入图片描述

  

定义

 
    游标尺模式,顾名思义,它的灵感来源于我们日常生活中的游标尺。想象一下,当你需要精确测量一个物体的长度时,你会使用什么工具?一把简单的直尺可能无法满足你对精度的要求,这时候,游标尺就派上了用场。

    特点: 能够提供一个更精细的测量单位,通过主尺和游标的配合使用,可以读取到比单一刻度更精确的数值。同样地,在软件设计中,游标尺模式也提供了一种精确访问和处理数据元素的方式。

    在游标尺模式中,游标充当了数据访问的指针角色,它可以在数据集合中自由移动,并且能够精确地指向和访问集合中的每一个元素。与迭代器模式不同,游标尺模式更注重于对单个元素的精确控制和访问,而不是简单地遍历整个集合。

    简单来说,游标尺模式就像是一个专业的测量员,它不仅能够告诉你整个数据集合的长度(如果需要的话),还能够精确地定位到你感兴趣的每一个数据点,并且允许你对这些点进行细致的观察和操作。

    通过这种方式引入游标尺模式的概念,想必你应该可以清晰地看到它与迭代器模式之间的区别。迭代器模式更像是一个导游,带领你快速地浏览整个景点(数据集合),而游标尺模式则是一个专业的导游,不仅能够带你游览整个景点,还能够根据你的需求,精确地带你深入到景点的每一个细节中去
 

 作用

    首先,它提供了一种灵活的方式来遍历集合对象,可以根据需要控制遍历的方向、步长等参数,使得遍历过程更加可控和灵活。

    游标尺模式可以隐藏集合对象内部的复杂性,使得使用者无需了解集合的具体实现细节,只需通过游标对象进行操作即可。
    此外,游标尺模式还支持在遍历过程中进行元素的插入、删除等操作,提供了一种动态地修改集合内容的方式。
 

  详见:
探索设计模式的魅力:精准、快速、便捷:游标尺模式在软件设计中的三大优势文章浏览阅读3.2k次,点赞154次,收藏137次。游标尺模式是一种常用的软件设计模式,通过逐条处理数据集来优化性能和提升操作的便捷性。在处理大规模数据集时,该模式能够显著降低内存消耗,提高处理速度,并保证数据的精确控制。尽管游标尺模式在处理复杂逻辑时可能增加难度,且可能影响性能和增加维护成本,但其在精确处理数据方面的出色表现使其成为软件设计的有效解决方案。在具体应用中,我们应根据实际需求和场景特点来权衡其优缺点,以充分发挥其优势。总之,游标尺模式为需要精确处理数据的软件设计场景提供了有力支持。https://blog.csdn.net/danci_/article/details/136980023

 

Part 2: 迭代器模式 — 走遍无难遍的秘密武器 🔍🚀

  
在这里插入图片描述

  

 定义

 
    迭代器模式,我们可以将其想象成一个导游。当我们游览一座大型博物馆时,导游会负责带领我们参观,一一介绍各个展区的特色展品。这位导游就是迭代器,他知道如何遍历整个博物馆(数据集合),并且按顺序向我们展示每个展区的内容(数据元素)。

    与游标尺模式不同,迭代器模式更注重于提供一个标准化的访问接口,使得我们无需了解底层数据结构的具体实现细节。无论是参观一个拥有丰富展品的博物馆,还是一个陈列简洁的画廊,导游(迭代器)都能以相同的方式带领我们遍历。

    在编程中,迭代器模式也是如此。它提供了一个统一的接口来遍历不同的数据结构,比如数组、列表、集合等。通过迭代器,我们可以不关心数据是如何存储和组织的,只需要调用迭代器的next()方法来获取下一个元素,以及使用hasNext()方法来检查是否还有更多元素可供访问。

    通过这种方式,迭代器模式简化了数据遍历的操作,提高了代码的可读性和可维护性。它就像那位尽职的导游,无论面对何种类型的博物馆,都能带给我们流畅而愉快的参观体验。而与游标尺模式相比,迭代器模式更侧重于提供一个通用的遍历机制,而不是对单个元素的精细控制。
 

作用

    提供了一种统一的接口来遍历不同的聚合对象,使得代码更加简洁和可维护。使用者只需通过迭代器对象进行操作,而无需关心聚合对象的具体类型或实现细节。

    迭代器模式支持在遍历过程中进行元素的增删操作,可以方便地实现对聚合对象的动态修改。
 
    此外,迭代器模式还提供了一种延迟计算的方式,可以在遍历过程中按需加载元素,提高了程序的效率和性能。
 

  详见:
探索设计模式的魅力:迭代器模式让你轻松驾驭复杂数据集合文章浏览阅读2.5k次,点赞141次,收藏100次。迭代器模式是设计模式中的一种,旨在提供一种访问集合元素的方式,同时不暴露底层数据结构。其核心是抽离遍历集合的复杂性,实现一个统一的迭代接口,简化客户端与数据结构的交互。
该模式的目的是解决不同数据结构遍历的普遍需求,并应对直接暴露对象内部表示所带来的维护和扩展难题。迭代器模式通过封装遍历算法,减少冗余,提升代码抽象级别,对软件设计的清晰性和灵活性至关重要。
迭代器模式中的关键角色包括Iterator接口定义必要的遍历操作,ConcreteIterator实现具体的遍历逻辑,以及Aggregate接口表
https://blog.csdn.net/danci_/article/details/136175853

  

Part 3: 从游标尺到迭代器 — 解锁编程的无限可能 🗝️🌟

  
在这里插入图片描述
  

区别

在这里插入图片描述

    游标尺模式和迭代器模式在软件开发中各有其独特的作用和适用场景。游标尺模式强调对单个元素的精确访问和操作性能优化;而迭代器模式则注重提供统一的遍历接口和简化遍历操作。开发者应根据具体需求和场景选择合适的模式来使用。
  

关联与协同应用

  
    在软件设计中,游标尺模式和迭代器模式虽然各自有着独特的应用场景和优势,但它们之间也存在一定的关联,并且可以通过协同应用来提升软件设计的效率和质量。
  

  关联:遍历与控制

  
    游标尺模式和迭代器模式在核心功能上都涉及到了对集合元素的遍历。无论是游标尺还是迭代器,它们都提供了一种访问集合元素的方式,使得开发者能够按照特定的顺序或条件来逐个处理这些元素。这种遍历功能是两种模式之间的主要关联点。
  

  区别:精细控制与通用接口

  
    尽管游标尺模式和迭代器模式在遍历功能上有所关联,但它们在实现方式和应用场景上存在明显的区别。

    游标尺模式更注重对单个元素的精细控制。它允许开发者在遍历过程中进行复杂的操作,如定位特定元素、修改元素值或删除元素等。游标尺模式通常与特定的数据结构或数据库操作紧密相关,它提供了一种更加灵活和细粒度的访问机制。

    相比之下,迭代器模式则更注重提供一个统一的遍历接口。它抽象了底层数据结构的细节,使得开发者能够以一种标准化的方式来遍历不同的集合类型。迭代器模式强调的是遍历的通用性和简洁性,它使得代码更加清晰、易于理解和维护。
 

  协同应用:灵活性与效率并重

 
    在实际的软件设计中,我们可以根据具体的需求将游标尺模式和迭代器模式巧妙结合,以达到更优的解决方案。

    例如,在处理大型数据集或复杂数据结构时,我们可以使用游标尺模式来提供对元素的精细控制。通过游标尺,我们可以精确地定位和处理每个元素,满足特定的业务需求。同时,为了简化遍历操作和提高代码的可重用性,我们可以在游标尺的基础上实现一个迭代器接口。这样,开发者既可以利用游标尺的精细控制能力,又可以享受迭代器带来的简洁和统一的遍历体验。

    另外,在一些需要同时支持多种遍历方式的场景中,我们也可以将游标尺模式和迭代器模式结合使用。例如,一个数据库管理系统可能同时提供了基于游标尺的复杂查询功能和基于迭代器的简单遍历功能。这样,开发者可以根据不同的需求选择合适的遍历方式,灵活应对各种业务场景。
 

Part 4: 设计场景与问题示例 🤼

  
在这里插入图片描述
  

  场景

  
    考虑一个在线购物平台的订单处理系统。在这个系统中,我们需要处理大量的订单数据,包括查询、修改和删除等操作。为了提高性能和灵活性,我们可以采用游标尺模式和迭代器模式的结合应用。

    对于复杂的订单查询需求,我们可以使用游标尺模式来定位和处理特定的订单。通过游标尺,我们可以根据订单状态、下单时间等条件来筛选订单,并逐个处理符合条件的订单记录。这种精细控制的能力使得我们能够精确地满足复杂的业务需求。

    而对于简单的订单遍历需求,我们可以提供一个基于迭代器的接口。通过迭代器,开发者可以以一种统一和简洁的方式来遍历订单集合,无需关心底层数据结构的细节。这种遍历方式适用于一些常见的操作,如展示订单列表或统计订单数量等。

    通过结合使用游标尺模式和迭代器模式,我们既能够满足复杂查询的需求,又能够简化常见的遍历操作。这样的设计既提高了软件开发的效率,又保证了代码的质量和可维护性。
  

  Java实现

  
    以下是一个简化的示例,说明如何在订单处理系统中结合使用游标和迭代器模式。

  1. 首先,我们定义一个Order类来表示订单:
public class Order {  private String orderId;  private String customerName;  private double totalAmount;  // 构造函数、getter和setter方法省略  
}
  1. 然后,我们定义一个 OrderRepository 接口,用于访问订单数据:
import java.util.Iterator;  public interface OrderRepository {  Iterator<Order> getOrders(); // 获取订单迭代器  void addOrder(Order order); // 添加订单  void removeOrder(String orderId); // 删除订单  // 其他方法省略  
}
  1. 现在,我们来实现一个基于内存的简单 OrderRepository
import java.util.ArrayList;  
import java.util.Iterator;  
import java.util.List;  public class InMemoryOrderRepository implements OrderRepository {  private List<Order> orders = new ArrayList<>();  @Override  public Iterator<Order> getOrders() {  return orders.iterator(); // 返回订单列表的迭代器  }  @Override  public void addOrder(Order order) {  orders.add(order);  }  @Override  public void removeOrder(String orderId) {  orders.removeIf(order -> order.getOrderId().equals(orderId));  }  // 其他方法省略  
}

    在这个实现中,我们使用了 ArrayList 来存储订单数据,并且直接返回了它的 Iterator 对象来允许客户端遍历订单列表。这里巧妙使用了迭代器模式,因为客户端代码不需要知道底层是如何存储订单的,只需要通过迭代器接口来访问数据。

    然而,对于数据库中的订单数据,我们通常会使用JDBC或ORM框架来访问,并且可能会使用游标来遍历查询结果。
4. 假设我们使用JDBC,那么游标的使用可能类似于以下代码:

import java.sql.Connection;  
import java.sql.DriverManager;  
import java.sql.PreparedStatement;  
import java.sql.ResultSet;  
import java.sql.SQLException;  public class DatabaseOrderRepository implements OrderRepository {  private Connection connection;  public DatabaseOrderRepository(Connection connection) {  this.connection = connection;  }  @Override  public Iterator<Order> getOrders() {  // 这里不能直接返回ResultSet作为Iterator,因为ResultSet不是Iterator类型。  // 但我们可以创建一个适配器类来实现Iterator接口,并包装ResultSet。  try {  PreparedStatement stmt = connection.prepareStatement("SELECT * FROM orders");  ResultSet rs = stmt.executeQuery();  return new ResultSetIterator(rs); // 假设我们有一个ResultSetIterator类来实现Iterator接口。  } catch (SQLException e) {  throw new RuntimeException("Failed to retrieve orders", e);  }  }  // 其他方法省略,包括关闭连接等。  // 假设的ResultSetIterator类,用于将ResultSet适配为Iterator接口。  private static class ResultSetIterator implements Iterator<Order> {  private ResultSet resultSet;  public ResultSetIterator(ResultSet resultSet) {  this.resultSet = resultSet;  }  @Override  public boolean hasNext() {  try {  return resultSet.next();  } catch (SQLException e) {  throw new RuntimeException("Failed to check next element", e);  }  }  @Override  public Order next() {  try {  // 假设我们有一个从ResultSet创建Order对象的方法。  return createOrderFromResultSet(resultSet);   } catch (SQLException e) {  throw new RuntimeException("Failed to retrieve next element", e);  }  }  // createOrderFromResultSet方法的实现省略。  // 这个方法会根据ResultSet中的数据创建一个Order对象。  // 其他Iterator方法(如remove)可以根据需要实现或抛出UnsupportedOperationException。  }  // 其他方法省略,包括addOrder和removeOrder的实现,这些可能需要执行相应的SQL语句。  
}

    在这个示例中,我们没有直接巧妙使用游标尺模式,因为JDBC的 ResultSet 本身就是游标的一个实现。我们通过 PreparedStatement 执行查询,得到 ResultSet 对象,然后使用自定义的 ResultSetIterator 类来将其适配为 Iterator 接口,以便客户端代码可以以统一的方式遍历订单数据,无论数据是存储在内存中还是数据库中。这种适配器模式的使用是巧妙的,因为它允许我们将两种不同的遍历机制(游标和迭代器)统一到一个接口下。

    注:上面的代码示例是为了说明概念而简化的,并没有处理异常关闭资源或实现所有必要的功能。在实际应用中,你需要确保正确处理异常、关闭数据库连接和结果集,以及实现其他必要的业务逻辑。
  

🔥 结论与行动呼吁 💖

  
在这里插入图片描述

  

    在编程的旅程中,我们不断追求着代码的优雅与高效。而游标尺模式和迭代器模式,正是我们手中的两把利剑,助我们披荆斩棘,攻克编程难题。它们的重要性不言而喻,无论是在处理集合数据,还是遍历数据库查询结果,都能发挥出巨大的作用。👍
       通过本文的对比分析,我们更加清晰地认识到这两种模式的独特魅力和各自的优势。迭代器模式以统一的接口访问元素,无需暴露底层结构,为集合数据的遍历提供了便捷之道;而游标尺模式则专注于数据库查询结果的逐行访问,为大数据处理提供了灵活的解决方案。🧐
  

    在此,我们衷心希望每一位读者都能将所学知识转化为实践动力,在实际编程中灵活运用这两种模式,不断提升代码的效率和可维护性。让你的代码如行云流水般流畅,既具备优雅之美,又拥有高效之能。🤔
  

    🔥现在,就让我们一起携手,深入探索这两大设计模式的奥秘吧!在编程的世界里,我们将共同书写出更加精彩的篇章,让你的代码之旅更加绚烂多彩!🚀🛤️
  

    👏 让我们一起迈向更加精彩的软件设计之路吧!在此助您在软件设计的海洋中乘风破浪。 🚢
  

🚀 转载自:设计模式深度解析:深入浅出的揭秘游标尺模式与迭代器模式的神秘面纱 ✨

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/290050.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Zabbix6 - Centos7源码编译部署HA高可用集群手册

Zabbix6 - Centos7源码编译部署HA高可用集群手册 HA高可用集群 总所周知,在我们IT运维的圈圈中,HA高可用集群服务算是逼格最高的吧也是运维里保障力度最大的环境。 HA是HighlyAvailable缩写,是双机集群系统简称,提高可用性集群,是保证业务连续性的有效解决方案,一般有两个…

深入探讨多线程编程:从0-1为您解释多线程(下)

文章目录 6. 死锁6.1 死锁原因 6.2 避免死锁的方法加锁顺序一致性。超时机制。死锁检测和解除机制。 6. 死锁 6.1 死锁 原因 系统资源的竞争&#xff1a;&#xff08;产生环路&#xff09;当系统中供多个进程共享的资源数量不足以满足进程的需要时&#xff0c;会引起进程对2…

Fastadmin给列表数据绑定添加内容

不同及服务需要收集不同的字段&#xff0c;在服务列表处增加按钮&#xff0c;弹出管理字段列表&#xff0c;单独管理每个服务的字段。如下图&#xff0c;给不同的服务绑定不同表单字段&#xff0c;点击表单按钮弹出页面维护当前服务的字段。 实现代码 //初始化表格处添加按钮 …

Linux根据时间删除文件或目录

《liunx根据时间删除文件》和 《Linux 根据时间删除文件或者目录》已经讲述了根据时间删除文件或目录的方法。 下面我做一些补充&#xff0c;讲述一个具体例子。以删除/home目录下的文件为例。 首先通过命令&#xff1a; ls -l --time-style"%Y-%m-%d %H:%M:%S"…

软件验收报告都包含哪些内容?为什么要做验收测试?

验收测试报告用于评估软件产品是否满足预定的要求和标准,是软件测试的重要输出文档。 通过验收测试报告&#xff0c;开发团队可了解软件存在问题和改进方向&#xff0c;进行修复和优化。同时&#xff0c;报告也可作为软件交付用户时提供的必要文档之一&#xff0c;帮助用户更好…

初识C++ · 入门(1)

目录 前言&#xff1a; 1 命名空间 2 输入和输出 3 缺省参数 5 函数重载 前言&#xff1a; C与C语言是有一定交集的&#xff0c;可以理解为本贾尼在使用C语言的时候认为有缺陷&#xff0c;于是加了一些小语法进行改良&#xff0c;后来经过委员会的修改&#xff0c;C98问世…

华为云使用指南02

5.​​使用GitLab进行团队及项目管理​​ GitLab旨在帮助团队进行项目开发协作&#xff0c;为软件开发和运营生命周期提供了一个完整的DevOps方案。GitLab功能包括&#xff1a;项目源码的管理、计划、创建、验证、集成、发布、配置、监视和保护应用程序等。该镜像基于CentOS操…

【已修复】iPhone13 Pro 长焦相机水印(黑斑)修复 洗水印

iPhone13 Pro 长焦相机水印&#xff08;黑斑&#xff09;修复 洗水印 问题描述 iPhone13 Pro 后摄3倍相机有黑色斑点&#xff08;水印&#xff09;&#xff0c;如图所示&#xff0c; 后摄相机布局如图所示&#xff0c; 修复过程 拆机过程有风险&#xff0c;没有把握最好不要…

HTB devvortex靶机记录

做这个靶机的师傅们我先提一句&#xff0c;不知道是否是因为网速还是其他因素影响&#xff0c;登录后台管理后&#xff0c;有大概率会被其他人挤下去&#xff0c;所以做这道题的师傅可以考虑在没人的时候去做。 打开靶场以后老规矩nmap扫一遍 这里爆出了80端口和22端口&#xf…

葵花卫星影像应用场景及数据获取

一、卫星参数 葵花卫星是由中国航天科技集团公司研制的一颗光学遥感卫星&#xff0c;代号CAS-03。该卫星于2016年11月9日成功发射&#xff0c;位于地球同步轨道&#xff0c;轨道高度约为35786公里&#xff0c;倾角为0。卫星设计寿命为5年&#xff0c;搭载了高分辨率光学相机和多…

AI大模型智能大气科学探索之:ChatGPT在大气科学领域建模、数据分析、可视化与资源评估中的高效应用及论文写作

本文深度探讨人工智能在大气科学中的应用&#xff0c;特别是如何结合最新AI模型与Python技术处理和分析气候数据。介绍包括GPT-4等先进AI工具&#xff0c;旨在帮助大家掌握这些工具的功能及应用范围。内容覆盖使用GPT处理数据、生成论文摘要、文献综述、技术方法分析等实战案例…

Web Components使用(一)

在使用Web Components之前&#xff0c;我们先看看上一篇文章Web Components简介&#xff0c;其中提到了相关的接口、属性和方法。 正是这些接口、属性和方法才实现了Web Components的主要技术&#xff1a;Custom elements&#xff08;自定义元素&#xff09;、Shadow DOM&#…

Unity2018发布安卓报错 Exception: Gradle install not valid

Unity2018发布安卓报错 Exception: Gradle install not valid Exception: Gradle install not valid UnityEditor.Android.GradleWrapper.Run (System.String workingdir, System.String task, System.Action1[T] progress) (at <c67d1645d7ce4b76823a39080b82c1d1>:0) …

Java八股文(JVM)

Java八股文のJVM JVM JVM 什么是Java虚拟机&#xff08;JVM&#xff09;&#xff1f; Java虚拟机是一个运行Java字节码的虚拟机。 它负责将Java程序翻译成机器代码并执行。 JVM的主要组成部分是什么&#xff1f; JVM包括以下组件&#xff1a; ● 类加载器&#xff08;ClassLoa…

|行业洞察·中国制造业|《融合新一代信息技术的中国制造业数字…级关键技术与应用》

报告内容的详细解读&#xff1a; 1. 数字化转型升级与智能制造 报告指出智能制造是先进制造技术与新一代信息技术的深度融合&#xff0c;涵盖产品、制造、服务全生命周期的各个环节。新一代智能制造产生出大数据&#xff0c;实现了人、信息、物理三元融合&#xff0c;新基建助…

前端基础知识html

一.基础标签 1.<h1>-<h6>:定义标题&#xff0c;h最大&#xff0c;h最小 2.<font>&#xff1a;定义文本的字体&#xff0c;尺寸&#xff0c;颜色 3.<b>&#xff1a;定义粗体文本 4.<i>&#xff1a;定义斜体文本 5.<u>&#xff1a;定义文本下…

3.28作业

#include <iostream> using namespace std; // 构造函数示例 class MyClass { private: int data; public: // 默认构造函数 MyClass() { data 0; } // 带参数的构造函数 MyClass(int value) { data value; } …

【Linux 驱动基础】Linux platform平台设备驱动

# 前置知识 总线驱动模型简介&#xff1a; 总线是处理器与一个或者多个设备之间的通道&#xff0c;在设备模型中&#xff0c;所有的设备都是通过总线相连&#xff0c;当然也包括虚拟的 platform 平台总线。 总线驱动模型中有三要素&#xff1a; 1. 总线 /*** struct bus_ty…

Vite 为什么比 Webpack 快?

目录 1. Webpack 的构建原理 2. Script 的模块化&#xff08;主流浏览器对 ES Modules 的支持&#xff09; 3. Webpack vs Vite 开发模式的差异 对 ES Modules 的支持 底层语言的差异 热更新的处理 1. Webpack 的构建原理 前端之所以需要类似于 Webpack 这样的构建工具&…

发票是扫码验真好,还是OCR后进行验真好?

随着科技的进步&#xff0c;电子发票的普及使得发票的验真方式也在不断演进。目前&#xff0c;我们常见的发票验真方式主要有两种&#xff1a;一种是扫描发票上的二维码进行验真&#xff0c;另一种是通过OCR&#xff08;Optical Character Recognition&#xff0c;光学字符识别…