5分钟速览深度学习经典论文 —— attention is all you need

《Attention is All You Need》是一篇极其重要的论文,它提出的 Transformer 模型和自注意力机制不仅推动了 NLP 领域的发展,还对整个深度学习领域产生了深远影响。这篇论文的重要性体现在其开创性、技术突破和广泛应用上,是每一位深度学习研究者和从业者必读的经典之作

1. 论文背景与动机

研究背景

• 在 2017 年之前,序列建模任务(如机器翻译)主要依赖于递归神经网络(RNN)和卷积神经网络(CNN)。
• RNN 和 CNN 存在一些问题:
• RNN 难以并行化,训练速度慢。
• CNN 难以捕捉长距离依赖关系。

研究动机

• 提出一种完全基于注意力机制(Attention Mechanism)的模型,摒弃递归和卷积结构,解决上述问题。
• 目标是通过并行化和长距离依赖捕捉,提高模型效率和性能。


2. 核心贡献

论文的主要贡献包括:

  1. 提出 Transformer 模型:完全基于自注意力机制(Self-Attention)的架构。
  2. 引入多头注意力机制(Multi-Head Attention):通过多个注意力头捕捉不同的特征表示。
  3. 位置编码(Positional Encoding):通过添加位置信息,弥补自注意力机制无法感知序列顺序的缺陷。
  4. 在机器翻译任务上取得显著性能提升:在 WMT 2014 英德和英法翻译数据集上取得了当时的最优结果。

请添加图片描述

3. 模型架构

Transformer 模型由编码器(Encoder)和解码器(Decoder)组成,每个部分由多个相同的层堆叠而成。

编码器(Encoder)

• 每层包含两个子层:

  1. 多头自注意力机制(Multi-Head Self-Attention):捕捉输入序列中元素之间的关系。
  2. 前馈神经网络(Feed-Forward Network):对每个位置的表示进行非线性变换。
    • 每个子层后使用残差连接(Residual Connection)和层归一化(Layer Normalization)。
解码器(Decoder)

• 每层包含三个子层:

  1. 掩码多头自注意力机制(Masked Multi-Head Self-Attention):防止解码器关注未来信息。
  2. 多头注意力机制(Multi-Head Attention):关注编码器的输出。
  3. 前馈神经网络(Feed-Forward Network)
    • 同样使用残差连接和层归一化。
位置编码(Positional Encoding)

• 由于 Transformer 没有递归或卷积结构,它需要额外的位置信息来感知序列顺序。
• 使用正弦和余弦函数生成位置编码,并将其添加到输入嵌入中。


4. 关键技术

自注意力机制(Self-Attention)

• 通过 Query、Key、Value 计算输入序列中元素之间的关联性。
• 公式:
Attention ( Q , K , V ) = Softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{Softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=Softmax(dk QKT)V
其中 d k d_k dk 是 Key 的维度。

多头注意力机制(Multi-Head Attention)

• 使用多个注意力头捕捉不同的特征表示。
• 公式:
MultiHead ( Q , K , V ) = Concat ( head 1 , … , head h ) W O \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W^O MultiHead(Q,K,V)=Concat(head1,,headh)WO
其中每个头独立计算注意力。
在这里插入图片描述

训练与优化

• 使用 Adam 优化器,动态调整学习率。
• 使用标签平滑(Label Smoothing)防止过拟合。


5. 实验与结果

数据集

• WMT 2014 英德和英法翻译数据集。

性能

• 在英德翻译任务上,BLEU 得分为 28.4,比当时的最优模型提高了 2 BLEU。
• 在英法翻译任务上,BLEU 得分为 41.8,训练成本仅为其他模型的 1/4。

消融实验

• 验证了多头注意力机制、位置编码和模型深度对性能的影响。


6. 讨论与未来工作

• Transformer 模型的并行化能力使其在大规模数据集上表现优异。
• 自注意力机制的计算复杂度随序列长度平方增长,限制了其在长序列任务中的应用。
• 未来可以探索更高效的自注意力机制和更大规模的预训练模型。


7. 总结

“Attention is All You Need” 提出了 Transformer 模型,彻底改变了序列建模领域。其核心创新——自注意力机制和多头注意力机制——为后续研究(如 BERT、GPT 等)奠定了基础。这篇论文不仅在理论上具有重要价值,还在实际应用中取得了显著成果,成为现代深度学习的里程碑之一。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/29055.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

苹果商店上架流程,app上架发布流程

苹果商店地址 https://appstoreconnect.apple.com/login 其他地址:开发 - Apple Developer 1.更新代码 将项目的代码更新到最新,更新成功后右下角会给出提示 2.打开模拟器 鼠标右键可以选择设备(Device) 3.测试运行 如下图可以看到已经识别到设备了,点击运行即可,运行到模…

六十天前端强化训练之第十天之DOM操作基础

欢迎来到编程星辰海的博客讲解 目录 一、DOM核心概念 1.1 DOM树结构 1.2 节点类型 1.3 节点关系 二、基本DOM操作 2.1 元素选择 2.2 元素创建/修改 2.3 节点操作 三、事件处理机制 3.1 事件流三个阶段 3.2 事件绑定 3.3 事件对象 四、动态表格案例 4.1 核心代码 …

C# 开发工具Visual Studio下载和安装

开发环境与工具 C#的主要开发环境是Visual Studio,这是一个功能强大的集成开发环境(IDE),集成了代码编辑、调试、项目管理、版本控制等功能。此外,Visual Studio Code也是一个轻量级的跨平台代码编辑器,支…

linux 系统内核查询

1. 使用uname命令 uname命令可以用来显示系统信息,包括内核版本。 查看完整的内核版本信息:uname -a [rootlocalhost ~]# uname -a Linux localhost.localdomain 4.18.0-448.el8.x86_64 #1 SMP Wed Jan 18 15:02:46 UTC 2023 x86_64 x86_64 x86_64 GN…

Matlab实现车牌识别

车牌识别技术作为现代智能交通系统、安防监控以及诸多车辆管理应用场景中的关键环节,正发挥着日益重要的作用,它能够自动、快速且精准地从车辆图像或视频流中提取车牌信息,实现车辆身份的智能化识别。 技术原理 车牌识别主要依托于图像处理、…

Notepad++ 8.6.7 安装与配置全攻略(Windows平台)

一、软件定位与核心优势 Notepad 是开源免费的代码/文本编辑器,支持超过80种编程语言的高亮显示,相比系统自带记事本具有以下优势: 轻量高效:启动速度比同类软件快30%插件扩展:支持NppExec、JSON Viewer等200插件跨文…

深入探究LLamaFactory推理DeepSeek蒸馏模型时无法展示<think>思考过程的问题

文章目录 问题背景初始测试与问题发现LLaMA Factory测试结果对照实验:Ollama测试系统性排查与解决方案探索1. 尝试更换模板2. 深入研究官方文档3. 自定义模板实现优化界面展示:实现思考过程的可视化实现方法参数调整影响分析实验一实验二🎉进入大模型应用与实战专栏 | 🚀…

从零开始在Windows使用VMware虚拟机安装黑群晖7.2系统并实现远程访问

文章目录 前言1.软件准备2. 安装VMware17虚拟机3.安装黑群晖4. 安装群晖搜索助手5. 配置黑群晖系统6. 安装内网穿透6.1 下载cpolar套件6.2 配置群辉虚拟机6.3 配置公网地址6.4 配置固定公网地址 总结 前言 本文主要介绍如何从零开始在Windows系统电脑使用VMware17虚拟机安装黑…

康谋分享 | 3DGS:革新自动驾驶仿真场景重建的关键技术

随着自动驾驶技术的迅猛发展,构建高保真、动态的仿真场景成为了行业的迫切需求。传统的三维重建方法在处理复杂场景时常常面临效率和精度的挑战。在此背景下,3D高斯点阵渲染(3DGS)技术应运而生,成为自动驾驶仿真场景重…

WPS AI+office-ai的安装、使用

** 说明:WPS AI和OfficeAI是两个独立的AI助手,下面分别简单讲下如何使用 ** WPS AI WPS AI是WPS自带AI工具 打开新版WPS,新建文档后就可以看到菜单栏多了一个“WPS AI”菜单,点击该菜单,发现下方出现很多菜单&#xf…

MacOS Big Sur 11 新机安装brew wget python3.12 exo

MacOS Big Sur 11,算是很老的系统了,所以装起来有点费劲。 首先安装brew 按照官网的方法,直接执行下面语句即可安装: export HOMEBREW_BREW_GIT_REMOTE"https://githubfast.com" # put your Git mirror of Homebrew/brew here …

python-leetcode-一和零

474. 一和零 - 力扣(LeetCode) 这道题是一个典型的 0-1 背包问题,需要用动态规划(DP)来求解。 解题思路 1. 定义状态 设 dp[i][j] 表示最多有 i 个 0 和 j 个 1 时,可以获得的最大子集的大小。 2. 状态转移方程 对于 strs 中的每个字符串 s: 计算 s 中 0 和 1 的个数…

【杂谈】信创电脑华为w515(统信系统)登录锁定及忘记密码处理

华为w515麒麟芯片版,还有非麒麟芯片版本,是一款信创电脑,一般安装的UOS系统。 准备一个空U盘,先下载镜像文件及启动盘制作工具,连接如下: 百度网盘 请输入提取码 http://livecd.uostools.com/img/apps/l…

安卓免费工具:海量素材助力个性化头像制作

软件介绍 今天要给大家介绍的软件是DIY头像生成,这是一款超有创意的头像制作工具,可在安卓系统使用,而且它完全免费。 在使用手机的过程中,大家肯定都想拥有一个独特又好看的头像。DIY头像生成就能满足这个需求,它内…

K8S高可用集群-小白学习之二进制部署(ansible+shell)

一.K8S高可用集群配置概述 序言:本文从一个小白的视角进行K8S的研究和部署,采用二进制的方式是为了更清楚了分解部署流程及了解这个集群是怎么运作的,加上ansible+shell是方便在这个过程中,遇到了问题,我们可以不断的快速重复部署来测试和研究问题的所在点,本文的架构图…

数据库系统概论(一)详细介绍数据库与基本概念

数据库系统概论(一)介绍数据库与基本概念 前言一、什么数据库1.数据库的基本概念2.数据库的特点 二、数据库的基本概念1. 数据2. 数据库3.数据库管理系统4.数据库系统 三、数据管理技术的产生和发展四、数据库系统的特点1.数据结构化2.数据共享性3.数据冗…

threejs:着色器onBeforeCompile给导入的模型添加光带扫描效果

模型材质属性丢失 上一篇博客我们学习了用着色器给模型添加光带扫描效果,今天来学习给导入的模型添加光带扫描效果,目标是给如下图的立筒仓加光带扫描。 首先我们试试原来的方法还是否有效。 import * as THREE from three;// 引入gltf模型加载库GLTFL…

Python----数据分析(Matplotlib五:pyplot的其他函数,Figure的其他函数, GridSpec)

一、pyplot的其他函数 1.1、xlabel 在matplotlib中, plt.xlabel() 函数用于为当前活动的坐标轴(Axes)设置x轴的 标签。当你想要标识x轴代表的数据或单位时,这个函数非常有用。 plt.xlabel(xlabel text) 1.2、ylabel 在matplotl…

基于GeoTools的GIS专题图自适应边界及高宽等比例生成实践

目录 前言 一、原来的生成方案问题 1、无法自动读取数据的Bounds 2、专题图高宽比例不协调 二、专题图生成优化 1、直接读取矢量数据的Bounds 2、专题图成果抗锯齿 3、专题成果高宽比例自动调节 三、总结 前言 在当今数字化浪潮中,地理信息系统(…

aardio - 虚表 + 数据库 操作例程

import godking.vlistEx; import fonts.fontAwesome import win.ui; /*DSG{{*/ mainForm win.form(text"客户信息管理";right967;bottom556;border"none") mainForm.add( addData{cls"plus";text\uF067 新增;left8;top80;right77;bottom110;bgc…