【C语言基础】:自定义类型(一)--> 结构体

文章目录

      • 一、内置类型与自定义类型
        • 1.1 内置类型(基本数据类型)
        • 1.2 自定义类型
      • 二、结构体
        • 2.1 结构体的声明
        • 2.2 结构体变量的创建和初始化
        • 2.3 结构体的特殊声明
        • 2.4 结构体的自引用
      • 三、结构体内存对齐
        • 3.1 对齐规则
        • 3.2 为什么存在内存对齐
        • 3.3 修改默认对齐数
      • 四、结构体传参
      • 五、结构体实现位段
        • 5.1 什么是位段
        • 5.2 位段的内存分配
        • 5.4 位段的跨平台问题
        • 5.5 位段使用的注意事项

在这里插入图片描述
         书山有路勤为径,学海无涯苦作舟。
创作不易,宝子们!如果这篇文章对你们有帮助的话,别忘了给个免费的赞哟~

                  在这里插入图片描述

一、内置类型与自定义类型

在C语言中,有内置类型(也称为基本数据类型)和自定义类型(结构体)两种类型。

1.1 内置类型(基本数据类型)
  1. 整型(Integer types):用于表示整数值,包括:
  • int:通常表示整数,取决于编译器和系统架构,一般为4字节。
  • short int:短整数,通常为2字节。
  • long int:长整数,通常为4字节或8字节。
  • long long int:长长整数,通常为8字节。
  1. 字符型(Character type)
  • char:用于表示单个字符或小整数值,通常为1字节。
  1. 浮点型(Floating-point types):用于表示实数,包括:
  • float:单精度浮点数,通常为4字节。
  • double:双精度浮点数,通常为8字节。
  • long double:扩展精度浮点数,大小不定,通常大于8字节。
  1. 空类型(Void type)
  • void:表示无类型,常用于函数返回类型或指针类型。

这些内置类型是C语言提供的基本数据类型,用于表示基本数据,如整数、浮点数、字符等。

1.2 自定义类型

在C语言中,除了内置的基本数据类型外,还可以通过结构体(Structures)和枚举类型(Enums)来定义自定义类型。

  1. 结构体(Structures)

结构体是一种用户自定义的数据类型,用于组合不同类型的数据成员。它允许将多个不同类型的变量组合在一起,形成一个新的数据类型,以便更方便地操作相关数据。

  1. 枚举类型(Enums)

枚举类型是一种用户自定义的数据类型,用于定义一组相关的命名常量。它允许将一组有限的取值集合在一起,形成一个新的数据类型,以便更清晰地表示程序中的意图。

二、结构体

2.1 结构体的声明

在C语言中,定义结构体使用 struct 关键字,结构体的形式如下:

struct 结构体名 {数据类型 成员名1;数据类型 成员名2;// 更多成员...
};

【示例】:描述⼀个学⽣

struct Stu
{char name[20]; // 姓名int age;  // 年龄char set[5];  // 性别int id;  // 学号
};  // 分号不能丢
2.2 结构体变量的创建和初始化

初始化结构体变量:有几种方法可以初始化结构体变量:

  1. 按照结构体成员的顺序初始化:
#include<stdio.h>int main()
{struct Stu s = { "张三", 19, "男", "202201170248" };printf("%s\n", s.name);printf("%d\n", s.age);printf("%s\n", s.set);printf("%s\n", s.id);return 0;
}

在这里插入图片描述
2. 按照指定的顺序初始化
前面在说操作符时我们讲过,可以通过点操作符来访问结构体成员,这里同样可以通过点操作符来给结构体成员进行初始化。

int main()
{struct Stu s = { .age = 19, .id = "202201170248", .name = "张三", .set = "男" };printf("%s\n", s.name);printf("%d\n", s.age);printf("%s\n", s.set);printf("%s\n", s.id);return 0;
}

在这里插入图片描述

2.3 结构体的特殊声明

在声明结构的时候,可以不完全的声明。

匿名结构体类型

struct
{int a;char b;float c;
}x;struct
{int a;char b;float c;
}a[20], *p;

注意

  1. 匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使用一次。
  2. p = &x; 这种写法是不合法的,编译器会把上面的两个声明当成完全不同的两个类型,所以是非法的。
2.4 结构体的自引用

结构体中的成员不仅可以是内置的数据类型,还可以是这个结构体本身,也就是结构体中包含指向相同类型结构体的指针或引用的情况。这种自引用的数据结构通常称为递归数据结构。

比如说定义一个链表的结点:

struct Node
{int data;struct Node next;
};

注意:这种自引用是错误的,因为⼀个结构体中再包含⼀个同类型的结构体变量,这样结构体变量的大小就会无穷的大,是不合理的。即无法确定 sizeof(struct Node) 的大小。

正确的自引用方式:

struct Node
{int data;struct Node* next;
};

在结构体自引用使用的过程中,夹杂了 typedef 对匿名结构体类型重命名,也容易出现引入问题。

typedef struct
{int data;struct Node* next;
}Node;

这种也是错误的,因为Node是对前面的匿名结构体类型的重命名产生的,但是在匿名结构体内部提前使用Node类型来创建成员变量,这是不行的。

解决方案如下:定义结构体不要使用匿名结构体了

typedef struct Node
{int data;struct Node* next;
}Node;

三、结构体内存对齐

【示例】:计算结构体的大小。

struct S
{char c1;  // 占1个字节int i;  // 占4个字节char c2;  // 占1个字节};int main()
{struct S s = { 0 };printf("%zd\n", sizeof(s));return 0;
}

在代码中我们看到结构体中有两个char和一个int,那他的大小就是6个字节,但结果真的是这样吗?
在这里插入图片描述
运行之后发现是12个字节,这是为什么呢?
这说明结构体中的成员不是随便放的,这里面是有一定规则的,这就是结构体的内存对齐。

3.1 对齐规则

首先得掌握结构体的对齐规则:

  1. 结构体的第⼀个成员对齐到和结构体变量起始位置偏移量为0的地址处。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
    对齐数 = 编译器默认的⼀个对齐数与该成员变量大小的较小值
  • VS 中默认的值为 8
  • Linux中 gcc 没有默认对齐数,对齐数就是成员自身的大小
  1. 结构体总大小为最大对齐数(结构体中每个成员变量都有⼀个对齐数,所有对齐数中最大的)的整数倍
  2. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。
    在这里插入图片描述

解析:对照规则1,第一个成员对齐到和结构体变量起始位置偏移量为0,也就是图中为0的位置(char占1个字节),其余的成员变量对齐到对齐数整数倍的位置(int占4个字节,VS的默认值为8,4小于8,即这里的对齐数为4),也就是4的整数倍(图中序号4)开始存,第三个成员变量也一样(char占1个字节小于8,即对齐数是1)。最后结构体总大小是最大对期数(第一个和第三个对齐数都是1,第二个对齐数是4)的整数倍,也就是4的倍数,由于已经占了9个字节,所以下一个4的倍数就是12,这里总共浪费了6个字节的空间大小。

【练习1】

struct S1
{char c1;  // 占1个字节char c2;  // 占1个字节int i;  // 占4个字节
};

在这里插入图片描述
在这里插入图片描述
【练习2】

struct S2
{double d;char c;int i;
};

在这里插入图片描述
在这里插入图片描述
【练习3】
结构体中嵌套结构体

struct S3
{double d;char c;int i;
};struct S4
{char c1;struct S3 s3;double d;
};

在这里插入图片描述
解析:这里就要对应规则4,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,S3中最大的对齐数是8,即要对齐到8的整数倍处。结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍,也是8的倍数。
在这里插入图片描述

3.2 为什么存在内存对齐
  1. 平台原因 (移植原因)
    不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

  2. 性能原因
    数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对齐成8的倍数,那么就可以用一个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个8字节内存块中。

总体来说:结构体的内存对齐是拿空间来换取时间的做法。

设计结构体的时候,我们既要满足对齐,又要节省空间

  • 让占用空间小的成员尽量集中在一起
struct S1
{char c1;int i;char c2;
};struct S2
{char c1;char c2;int i;
};

S1 和 S2 类型的成员一模一样,但是 S1 和 S2 所占空间的大小有了一些区别(S1占12个字节,S2占8个字节)。

3.3 修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对齐数。
【示例】

#include<stdio.h>
#pragma pack(1)  //设置默认对⻬数为1
struct S1
{char c1;int i;char c2;
};
#pragma pack()  //取消设置的对⻬数,还原为默认int main()
{struct S1 s1;printf("%zd\n", sizeof(s1));return 0;
}

在这里插入图片描述
结构体在对齐方式不合适的时候,我们可以自己更改默认对齐数。

四、结构体传参

【示例1】

#include<stdio.h>
struct S
{int arr[1000];int num;double d;
};
void print1(struct S s)
{for (int i = 0; i < 5; i++){printf("%d ", s.arr[i]);}printf("\n");printf("%d\n", s.num);printf("%lf\n", s.d);
}
int main()
{struct S s = { {1,2,3,4,5}, 100,3.14 };print1(s);return 0;
}

在这里插入图片描述
【示例2】

struct S
{int arr[1000];int num;double d;
};
void print2(const struct S* ps)
{for (int i = 0; i < 5; i++){printf("%d ", ps->arr[i]);}printf("\n");printf("%d\n", ps->num);printf("%lf\n", ps->d);
}
int main()
{struct S s = { {1,2,3,4,5}, 100,3.14 };print2(&s);return 0;
}

在这里插入图片描述
示例1示例2中首选示例2,因为示例传参时是将结构体在拷贝一份给形参,本身这个结构体所占的空间就比较大,在拷贝一份太占用空间,不太合适,而示例2传的是一个指针,可以通过这个指针直接访问这个结构体,不需要额外创建多余空间,当然,为了结构体内容不被修改,可以加一个const进行修饰。
原因

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递⼀个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降

结论
结构体传参的时候,要传结构体的地址。

五、结构体实现位段

5.1 什么是位段

位段的声明和结构是类似的,有两个不同:

  1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以选择其他类型。
  2. 位段的成员名后边有一个冒号和一个数字。

【示例】

struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};

A就是一个位段类型。

5.2 位段的内存分配
  1. 位段的成员可以是 int 、unsigned int 、signed int 或者是 char 等类型。
  2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
  3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

【示例】

struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};int main()
{struct S s = { 0 };s.a = 10;s.b = 12;s.c = 3;s.d = 4;return 0;
}

在这里插入图片描述

5.4 位段的跨平台问题
  1. int 位段被当成有符号数还是无符号数是不确定的。
  2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题)。
  3. 位段中的成员在内存中从左向右分配,还是从右向左分配,标准尚未定义。
  4. 当⼀个结构包含两个位段,第⼆个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

总结:
跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

5.5 位段使用的注意事项

位段的几个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配一个地址,一个字节内部的bit位是没有地址的。
所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入放在一个变量中,然后赋值给位段的成员。

【示例】

struct S
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};int main()
{struct S s = { 0 };// scanf("%d", &s._b);  // 这是错误的// 正确的示范int b = 0;scanf("%d", &b);s._b = b;return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/291493.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

再见 mysql_upgrade

在数据库管理的世界里&#xff0c;随着技术的不断进步和业务的不断发展&#xff0c;数据库的版本升级成为了一个不可避免的过程。 MySQL 作为业界领先的开源关系型数据库管理系统&#xff0c;其版本迭代与功能优化同样不容忽视。 而在这个过程中&#xff0c;升级工具就显得尤为…

如何在 Mac 上打开、编辑、复制、移动或删除存储在 Windows NTFS 格式 USB 驱动器上的文件 Tuxera NTFS for Mac使用教程

当您获得一台新 Mac 时&#xff0c;它只能读取 Windows NTFS 格式的 USB 驱动器。要将文件添加、保存或写入您的 Mac&#xff0c;您需要一个附加的 NTFS 驱动程序。Tuxera 他可以帮忙实现这一功能&#xff01; Tuxera可以轻松转换驱动器&#xff1a;无论使用Windows PC还是Mac&…

Day26 手撕各种集合底层源码(一)

Day26 手撕各种集合底层源码&#xff08;一&#xff09; 一、手撕ArrayList底层源码 1、概念&#xff1a; ArrayList的底层实现是基于数组的动态扩容结构。 2、思路&#xff1a; 1.研究继承关系 2.研究属性 3.理解创建集合的过程 – 构造方法的底层原理 4.研究添加元素的过程…

Typora for Mac/Win:让Markdown编辑更高效,创作更自由

在数字化时代&#xff0c;文本编辑已成为我们日常生活与工作中的重要环节。Markdown作为一种轻量级标记语言&#xff0c;以其简洁、易读、易写的特性&#xff0c;受到了广大用户的喜爱。而Typora&#xff0c;作为一款专为Markdown设计的文本编辑器&#xff0c;更是让Markdown编…

对接中泰极速行情 | DolphinDB XTP 插件使用教程

XTP 是中泰证券推出的高性能交易平台&#xff0c;专为专业投资者提供高速行情及交易系统&#xff0c;旨在提供优质便捷的市场接入通道。目前支持股票、基金、ETF、债券、期权等多个市场&#xff0c;可满足不同投资者需求。 基于 XTP 官方 C SDK&#xff0c;DolphinDB 开发了 X…

【SAP2000】在框架结构中应用分布式面板荷载Applying Distributed Panel Loads to Frame Structures

在框架结构中应用分布式面板荷载 Applying Distributed Panel Loads to Frame Structures 使用"Uniform to Frame"选项,可以简单地将荷载用于更多样化的情况。 With the “Uniform to Frame” option, loads can be easily used for a greater diversity of situat…

2024Web自动化测试的技术框架和工具有哪些?

Web 自动化测试是一种自动化测试方式&#xff0c;旨在模拟人工操作对 Web 应用程序进行测试。这种测试方式可以提高测试效率和测试精度&#xff0c;减少人工测试的工作量和测试成本。在 Web 自动化测试中&#xff0c;技术框架和工具起着至关重要的作用。本文将介绍几种常见的 W…

Fastjson配置消息转换器(时间格式问题)

问题&#xff1a; 我们可以看见&#xff0c;日期的格式有点问题。 由于ArticleListVO类的createTime成员变量是Date类型&#xff0c;默认是由java的Jackson来处理&#xff0c;使用 ISO-8601 规范来处理日期时间格式。ISO-8601 是一种国际标准的日期时间表示法&#xff0c;例如&…

Oracle中实现根据条件对数据的增删改操作——Merge Into

一、需求描述 在我们进行项目开发的过程中&#xff0c;会遇到这样的场景&#xff0c;需要根据某个条件对数据进行增、删、改的操作&#xff1b;遇到这种情况我们有2种方法进行解决&#xff1a; 方法一&#xff1a;①查询指定条件&#xff1b;②根据查询出的指定条件结果在执行…

conda配置完整的pytorch虚拟环境

新建环境 conda create -n py38 python3.8虚拟环境中安装CUDA&#xff0c;conda安装的cudatoolkit和NVIDIA提供的CUDA Toolkit不一样&#xff0c;前者是系统CUDA的子集。在虚拟环境中安装了cudatoolkit&#xff0c;则pytorch就会用虚拟环境中的cudatoolkit进行编译。注意cudato…

Centos安装部署

Centos安装部署 linux安装JDK 下载地址&#xff1a;https://www.oracle.com/java/technologies/oracle-java-archive-downloads.html 创建文件夹&#xff0c;输入命令&#xff1a; mkdir /usr/local/jdk 查看JDK信息&#xff0c;输入命令&#xff1a; java -version 将下载的…

配置visual studio code 用秘钥远程连接SSH服务器

配置visual studio code 用秘钥远程连接SSH服务器 文章目录 配置visual studio code 用秘钥远程连接SSH服务器简介1. 生成SSH密钥对2. 将公钥添加到Ubuntu服务器3. 将私钥添加到visual studio code的SSH配置文件中 简介 通过SSH密钥认证&#xff0c;用户无需在每次连接时输入密…

C++11 shared_from_this学习

最近学习网络变成发现一些C源码库中封装对象时会公有继承enable_shared_from_this&#xff1b; 用一个案例进行说明&#xff0c;案例代码如下&#xff1a; #include <iostream> #include <memory> #include <stdio.h>using namespace std;class C : public…

谈一谈BEV和Transformer在自动驾驶中的应用

谈一谈BEV和Transformer在自动驾驶中的应用 BEV和Transformer都这么火&#xff0c;这次就聊一聊。 结尾有资料连接 一 BEV有什么用 首先&#xff0c;鸟瞰图并不能带来新的功能&#xff0c;对规控也没有什么额外的好处。 从鸟瞰图这个名词就可以看出来&#xff0c;本来摄像头…

啥是MCU,MCU科普

啥是MCU&#xff0c;MCU科普 附赠自动驾驶学习资料和量产经验&#xff1a;链接 MCU是Microcontroller Unit 的简称&#xff0c;中文叫微控制器&#xff0c;俗称单片机&#xff0c;是把CPU的频率与规格做适当缩减&#xff0c;并将内存、计数器、USB、A/D转换、UART、PLC、DMA等…

剑指Offer题目笔记21(计数排序)

面试题74&#xff1a; 问题&#xff1a; ​ 输入一个区间的集合&#xff0c;将重叠的区间合并。 解决方案&#xff1a; ​ 先将所有区间按照起始位置排序&#xff0c;然后比较相邻两个区间的结束位置就能知道它们是否重叠。如果它们重叠就将它们合并&#xff0c;然后判断合并…

VS Code常用前端开发插件和基础配置

VS Code插件安装 VS Code提供了非常丰富的插件功能&#xff0c;根据你的需要&#xff0c;安装对应的插件可以大大提高开发效率。 完成前端开发&#xff0c;常见插件介绍&#xff1a; 1、Chinese (Simplified) Language Pack 适用于 VS Code 的中文&#xff08;简体&#xff…

再次加深理解Java中的并发编程

目录 一、线程、进程、程序 二、线程状态 三、线程的七大参数 四、lock与synchronized锁机制 一&#xff09;、lock与synchronized锁区别 二&#xff09;、synchronized锁原理 三&#xff09;、Lock锁原理 五、synchronized锁升级原理 一&#xff09;、锁升级基础知识 …

AIGC重塑金融:AI大模型驱动的金融变革与实践

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-tVrfBkGvUD0Qi13F {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

【微服务】配置Nacos管理SpringBoot配置文件(附解压包)

&#x1f4dd;个人主页&#xff1a;哈__ 期待您的关注 一、什么是Nacos Nacos可以帮助我们配置和管理微服务&#xff0c;是阿里的一个开源产品&#xff0c;是针对微服务架构中的服务发现、配置管理、服务治理的综合型解决方案。Nacos可以用来实现配置中心和服务注册中心。 …