时序预测 | Matlab实现CPO-BP冠豪猪算法优化BP神经网络时间序列预测

时序预测 | Matlab实现CPO-BP冠豪猪算法优化BP神经网络时间序列预测

目录

    • 时序预测 | Matlab实现CPO-BP冠豪猪算法优化BP神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现CPO-BP冠豪猪算法优化BP神经网络时间序列预测(完整源码和数据);
2.数据集为excel,单列时间序列数据集,运行主程序main.m即可,其余为函数文件,无需运行;
3.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标;
4.运行环境Matlab2018b及以上;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式资源出下载Matlab实现CPO-BP冠豪猪算法优化BP神经网络时间序列预测 。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 4;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测%%  划分数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数
% CSDN 机器学习之心

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/292663.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mysql数据库:MHA高可用架构

目录 前言 一、MHA概述 1、什么是MHA 2、MHA的特点 3、MHA的组成 4、MHA的工作原理 5、故障切换备选主库的算法 二、部署MHA高可用架构 1、环境部署 2、部署主从同步 2.1 修改主配置文件并创建软链接 2.1.1 master 修改主配置文件并创建软连接 2.1.2 slave1 修改主…

【JavaSE】类和对象详解(下)

前言 面向对象程序的三大特性:封装、继承、多态~ 书接上回 类和对象(上)~ 欢迎关注个人主页:逸狼 创造不易,可以点点赞吗~ 如有错误,欢迎指出~ 目录 前言 封装 private public 快速生成可访问封装的方法 包…

rocketmq管理工具rocketmq-console安装

rocketmq-console是一个图形化管理控制台,提供Broker集群状态查看,Topic管理,Producer、Consumer状态展示,消息查询等常用功能,这个功能在安装好RocketMQ后需要额外单独安装、运行。 中文文档地址:https:/…

蓝桥杯习题

https://www.lanqiao.cn/problems/1265/learning/ 第一题---排序 给定一个长度为N的数组A,请你先从小到大输出它的每个元素,再从大到小输出他的每个元素。 输入描述: 第一行包含一个整数N 第二行包含N个整数a1,a2,a3,...an,表…

生成 SSH 公钥

Windows 用户建议使用 Windows PowerShell 或者 Git Bash,在 命令提示符 下无 cat 和 ls 命令。 1、通过命令 ssh-keygen 生成 SSH Key: ssh-keygen -t ed25519 -C "Gitee SSH Key"-t key 类型 -C 注释 输出,如: 中间…

蓝桥杯嵌入式学习笔记(6):IIC程序设计

目录 前言 1. IIC基本原理 2. 电路原理 3. 代码编程 3.1 预备工作 3.2 AT24C02写读功能编写 3.2.1 AT24C02写操作实现 3.2.2 AT24C02读操作实现 3.3 MCP4017写读功能编写 3.3.1 MCP4017写操作实现 3.3.2 MCP4017读操作实现 3.4 main.c编写 3.4.1 头文件引用 3.4.…

Spring实战:采用Spring配置文件管理Bean

文章目录 一、Spring框架概述二、实战:采用Spring配置文件管理Bean(一)创建Jakarta EE项目(二)添加Spring依赖(三)创建杀龙任务类(四)创建勇敢骑士类(五&…

Chrome浏览器隐藏的截图功能配置及使用

来自实用又方便,轻松打开Chrome浏览器隐藏的截图功能!​​​​​​​ 一、通过谷歌Chrome浏览器 现在直接通过谷歌Chrome浏览器内置功能,免安装扩充插件也可以实现Chrome的截图和长截图功能了! 也不需要额外安装任何截图工具 &a…

数据链路层之信道:数字通信的桥梁与守护者

✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨ 🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢,在这里我会分享我的知识和经验。&am…

Adaboost集成学习 | Matlab实现基于ELM-Adaboost极限学习机结合Adaboost集成学习时间序列预测(股票价格预测)

目录 效果一览基本介绍模型设计程序设计参考资料效果一览 基本介绍 基于ELM-Adaboost极限学习机结合Adaboost集成学习时间序列预测(股票价格预测) 单变量时间序列单步预测。 ELM(Extreme Learning Machine,极限学习机)和AdaBoost(Adaptive Boosting,自适应提升)都是机…

基于 FFmpeg 和 SDL 的音视频同步播放器

基于 FFmpeg 和 SDL 的音视频同步播放器 基于 FFmpeg 和 SDL 的音视频同步播放器前置知识音视频同步简介复习DTS、PTS和时间基 程序框架主线程解复用线程音频解码播放线程视频解码播放线程 音视频同步逻辑源程序结果工程文件下载参考链接 基于 FFmpeg 和 SDL 的音视频同步播放器…

【Java 多线程】从源码出发,剖析Threadlocal的数据结构

文章目录 exampleset(T value)createMap(t, value);set(ThreadLocal<?> key, Object value)ThreadLocalMap和Thread的关系 全貌 ThreadLocal是个很重要的多线程类&#xff0c;里面数据结构的设计很有意思&#xff0c;很巧妙。但是我们平时使用它的时候常常容易对它的使用…

24年大一训练一(东北林业大学)

前言&#xff1a; 周五晚上的训练赛&#xff0c;以后应该每两周都会有一次。 正文&#xff1a; Problem:A矩阵翻转&#xff1a; #include<bits/stdc.h> using namespace std; int a[55][55]; int main(){int n,m;while(cin>>n>>m){for(int i1;i<n;i){for…

2024.3.30学习笔记

今日学习韩顺平java0200_韩顺平Java_对象机制练习_哔哩哔哩_bilibili 今日学习p295-p314 super关键字 super代表父类的引用&#xff0c;用于访问父类的属性、方法、构造器 super细节和语法 访问父类的属性&#xff0c;但不能访问父类的private属性 super.属性名 访问父类的…

CubeIDE 下如何将版本号和日期关联。

1. 使用__DATE__ 和__TIME__获取编译日期和时间。 2. 将__DATE__ 和__TIME__转换成UINT 3. 将转换后的数赋值给版本号。 4. 设置工程保证每次都会重新编译对应文件。 对应函数如下&#xff1a; uint8_t VER_MAIN; uint8_t VER_SUB; uint8_t VER_MIN; #include <stdlib.…

蓝桥杯刷题第四天

思路&#xff1a; 这道题很容易即可发现就是简单的暴力即可完成题目&#xff0c;我们只需满足所有数的和为偶数即可保证有满足条件的分法&#xff0c;同时也不需要存下每个输入的数据&#xff0c;只需要知道他是偶数还是奇数即可&#xff0c;因为我们只需要偶数个奇数搭配在一块…

使用通用内部函数对代码进行矢量化

返回&#xff1a;OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 上一篇&#xff1a;OpenCV 如何使用 XML 和 YAML 文件的文件输入和输出 下一篇&#xff1a;OpenCV系列文章目录&#xff08;持续更新中......&#xff09; ​ 目标 本教程的目标是提供使用通用内…

[flask]请求全局钩子

flask从入门到精通之钩子、异常、context、jinjia模板、过滤器 - 异步非阻塞 - 博客园 (cnblogs.com) 参考的这个博客&#xff0c;但有一个需要注意的是&#xff0c;最新版本的flask不知道是不是更新了还是怎么了&#xff0c;他的before_first_request不见了&#xff0c;如果继…

《极客时间TonyBai go语言第一课》学习笔记

文章目录 前置篇显式组合 大纲 前置篇 显式 在 C 语言中&#xff0c;下面这段代码可以正常编译并输出正确结果&#xff1a; #include <stdio.h> int main() { short int a 5; int b 8; long c 0; c a b; printf("%ld\n", c); }我们看到在上面这段代码中…

【git】git使用手册

目录 一 初始化 1.1 账号配置 1.2 ssh生成 1.2.1 配置ssh 1.2.2 测试SSH 1.3 初始化本地仓库并关联远程仓库 二 使用 2.1 上传 2.2 拉取 三 问题 3.1 关联失败 一 初始化 git的安装很简单,下载后大部分进行下一步完成即可----->地址: git工具下载 1.1 账号配置…