基于spark的大数据分析预测地震受灾情况的系统设计

基于spark的大数据分析预测地震受灾情况的系统设计

在本篇博客中,我们将介绍如何使用Apache Spark框架进行地震受灾情况的预测。我们将结合数据分析、特征工程、模型训练和评估等步骤,最终建立一个预测模型来预测地震造成的破坏程度,同时使用可视化大屏的方式展示数据的分布。

1、数据来源和准备

我们使用了合并后的地震数据作为我们的数据集。首先,让我们来看一下我们的数据集

# 读取数据
data = spark.read.csv("../data_ana/merged_data.csv", header=True, inferSchema=True).sample(False, 0.1, seed=42)data.show()

在这里插入图片描述

2、数据预处理和特征工程

在数据预处理和特征工程阶段,我们将对数据进行清洗、转换和特征提取等操作。具体步骤如下:

# 数据预处理和特征工程
string_cols = ['gender_individual', 'presence_in_household', 'disability_individual','education_level_individual','marital_status_individual', 'legal_ownership_status','land_surface_condition', 'foundation_type','roof_type', 'ground_floor_type','other_floor_type', 'position', 'plan_configuration','condition_post_eq','damage_grade_x', 'technical_solution_proposed_x', 'area_assesed','technical_solution_proposed_y','vdcmun_name', 'district_name']# 创建 StringIndexer 和 OneHotEncoder 对象
indexers = [StringIndexer(inputCol=column, outputCol=column+"_index",handleInvalid="skip") for column in string_cols]
encoder = OneHotEncoder(inputCols=[column+"_index" for column in string_cols],outputCols=[column+"_encoded" for column in string_cols])# 创建特征向量
assembler = VectorAssembler(inputCols=encoder.getOutputCols(), outputCol="features")# 创建Pipeline
pipeline = Pipeline(stages=indexers + [encoder, assembler])
data_final = pipeline.fit(data).transform(data)data_final.show()

在这里插入图片描述

3、异常数据处理

在异常数据处理阶段,我们将处理可能存在的异常情况,确保数据的完整性和准确性:

# 使用正则表达式提取数字部分
data_final = data_final.withColumn("damage_grade_y_numeric", regexp_extract(data_final["damage_grade_y"], r'\d+', 0))# 将列转换为 numeric 类型
data_final = data_final.withColumn("damage_grade_y_numeric", data_final["damage_grade_y_numeric"].cast("int"))# 显示转换后的结果
data_final.select("damage_grade_y", "damage_grade_y_numeric").show()

在这里插入图片描述

4、标题模型训练和评估

在模型训练和评估阶段,我们将使用随机森林分类器进行模型训练,并评估模型在测试集上的表现:

# 划分数据集为训练集和测试集
(train_data, test_data) = data_final.randomSplit([0.8, 0.2], seed=1234)# 初始化随机森林分类器
rf = RandomForestClassifier(labelCol="damage_grade_y_numeric", featuresCol="features", numTrees=10)# 训练模型
model = rf.fit(train_data)# 在测试集上进行预测
predictions = model.transform(test_data)# 模型评估
evaluator = MulticlassClassificationEvaluator(labelCol="damage_grade_y_numeric", predictionCol="prediction", metricName="accuracy")
accuracy = evaluator.evaluate(predictions)print("Test Accuracy = {:.2f}%".format(accuracy * 100))

在这里插入图片描述

标题5、可视化大屏实现与展示

为了更直观地展示预测结果,我们设计了一个可视化大屏。该大屏将包括地图展示、受灾情况分布图以及预测结果展示等内容,以帮助用户更好地理解地震造成的破坏程度。

<html><head>
<meta charset="utf-8">
<title>www.husonghe.com</title>
<style>
html {height: 100%;background-image: -webkit-radial-gradient(ellipse farthest-corner at center center, #1b44e4 0%, #020f3a 100%);background-image: radial-gradient(ellipse farthest-corner at center center, #1b44e4 0%, #020f3a 100%);cursor: move;
}body {width: 100%;margin: 0;overflow: hidden;
}
</style>
</head><body><canvas id="canv" width="1920" height="572"></canvas>
<script>
var num = 200;
var w = window.innerWidth;
var h = window.innerHeight;
var max = 100;
var _x = 0;
var _y = 0;
var _z = 150;
var dtr = function(d) {return d * Math.PI / 180;
};var rnd = function() {return Math.sin(Math.floor(Math.random() * 360) * Math.PI / 180);
};
var dist = function(p1, p2, p3) {return Math.sqrt(Math.pow(p2.x - p1.x, 2) + Math.pow(p2.y - p1.y, 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/292912.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker-compose运行springinitializr用来创建springboot2

前言 spring initializr官方的地址是: https://start.spring.io/ &#xff0c;这是一个用来创建springboot脚手架的一个工具&#xff0c;但是目前这个工具已经更新到springboot3&#xff0c;而我还没学springboot3&#xff0c;目前还想继续创建springboot2&#xff0c;我就想能…

Unity类银河恶魔城学习记录11-10 p112 Items drop源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili ItemObject_Trigger.cs using System.Collections; using System.Collecti…

Gin入门指南:从零开始快速掌握Go Web框架Gin

官网:https://gin-gonic.com/ GitHub:https://github.com/gin-gonic 了解 Gin Gin 是一个使用 Go 语言开发的 Web 框架,它非常轻量级且具有高性能。Gin 提供了快速构建 Web 应用程序所需的基本功能和丰富的中间件支持。 以下是 Gin 框架的一些特点和功能: 快速而高效:…

设计模式-结构型-享元模式Flyweight

享元模式的特点&#xff1a; 享元模式可以共享相同的对象&#xff0c;避免创建过多的对象实例&#xff0c;从而节省内存资源 使用场景&#xff1a; 常用于需要创建大量相似的对象的情况 享元接口类 public interface Flyweight { void operate(String extrinsicState); } 享…

信息工程大学第五届超越杯程序设计竞赛(同步赛)题解

比赛传送门 博客园传送门 c 模板框架 #pragma GCC optimize(3,"Ofast","inline") #include<bits/stdc.h> #define rep(i,a,b) for (int ia;i<b;i) #define per(i,a,b) for (int ia;i>b;--i) #define se second #define fi first #define e…

【C++庖丁解牛】自平衡二叉搜索树--AVL树

&#x1f341;你好&#xff0c;我是 RO-BERRY &#x1f4d7; 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f384;感谢你的陪伴与支持 &#xff0c;故事既有了开头&#xff0c;就要画上一个完美的句号&#xff0c;让我们一起加油 目录 前言1 AVL树的概念2. AVL…

Solidity Uniswap V2 Router swapTokensForExactTokens

最初的router合约实现了许多不同的交换方式。我们不会实现所有的方式&#xff0c;但我想向大家展示如何实现倒置交换&#xff1a;用未知量的输入Token交换精确量的输出代币。这是一个有趣的用例&#xff0c;可能并不常用&#xff0c;但仍有可能实现。 GitHub - XuHugo/solidit…

基础布局之RelativeLayout相对布局

目录 概述一、属性分类二、父容器定位属性2.1 示例12.2 示例2 三、相对定位属性3.1 示例13.2 示例23.3 示例3 概述 相对布局&#xff08;RelativeLayout&#xff09;是一种根据父容器和兄弟控件作为参照来确定控件位置的布局方式。 使用相对布局&#xff0c;需要将布局节点改成…

Spring Boot 使用 Redis

1&#xff0c;Spring 是如何集成Redis的&#xff1f; 首先我们要使用jar包 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><dependency><gro…

基于ssm校园教务系统论文

摘 要 互联网发展至今&#xff0c;无论是其理论还是技术都已经成熟&#xff0c;而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播&#xff0c;搭配信息管理工具可以很好地为人们提供服务。针对校园教务信息管理混乱&#xff0c;出错率高&#xff0c;信息安全性差…

Windows 11 专业版 23H2 Docker Desktop 下载 安装 配置 使用

博文目录 文章目录 Docker Desktop准备系统要求 (WSL 2 backend)在 Windows 上打开 WSL 2 功能先决条件开启 WSL 2 WSL下载安装启动配置使用镜像 Image卷积 Volumes容器 Containers 命令RedisMySQLPostGreSQL Docker Desktop Overview of Docker Desktop Docker Desktop 疑难解…

每日面经分享(pytest入门)

1. pytest具有什么功能 a. 自动发现和执行测试用例&#xff1a;pytest可以自动发现项目中的测试文件和测试函数&#xff0c;无需手动编写测试套件或测试运行器。 b. 丰富的断言函数&#xff1a;pytest提供了丰富的断言函数&#xff0c;方便地验证测试结果是否符合预期。断言函…

隐私计算实训营学习五:隐语PSI介绍及开发指南

文章目录 一、SPU 实现的PSI介绍1.1 PSI定义和种类1.1.1 PSI定义和种类1.1.2 隐语PSI功能分层 1.2 SPU 实现的PSI介绍1.2.1 半诚实模型1.2.2 PSI实现位置 二、SPU PSI调度架构三、Secretflow PSI开发指南四、隐语PSI后续计划 一、SPU 实现的PSI介绍 1.1 PSI定义和种类 1.1.1 …

C++心决之命名空间、重载函数和引用

目录 1. C关键字(C98) 2. 命名空间 2.1 命名空间定义 2.2 命名空间使用 3. C输入&输出 4. 缺省参数 4.1 缺省参数概念 4.2 缺省参数分类 5. 函数重载 5.1 函数重载概念 5.2 C支持函数重载的原理--名字修饰(name Mangling) 6. 引用 6.1 引用概念 6.2 引用特性…

Apollo配置中心使用

apollo配置中心使用 Apollo配置中心Apollo配置中心-简介apollo源码Apollo配置基本概念Apollo特性Apollo基础模型Apollo架构设计Apollo架构设计-实时推送设计Apollo架构设计-可用性Apollo架构设计-监控Apollo架构设计-扩展Apollo-本地部署准备工作安装步骤mysql命令行创建Apollo…

MultiPath HTTP:北大与华为合作部署FLEETY

当前的终端基本都能支持蜂窝网络和wifi网络&#xff0c;然而&#xff0c;不同的网络通路都不可避免的会出现信号不好或者其他因素引起的通路性能(吞吐量、时延等)下降。为了能够提升终端业务体验&#xff0c;很多不同的MultiPath方案被提出&#xff0c;其中&#xff0c;包括应用…

【数据分析面试】1. 计算年度收入百分比(SQL)

题目 你需要为公司的营收来源生成一份年度报告。计算截止目前为止&#xff0c;在表格中记录的第一年和最后一年所创造的总收入百分比。将百分比四舍五入到两位小数。 示例&#xff1a; 输入&#xff1a; annual_payments 表 列名类型amountINTEGERcreated_atDATETIMEstatusV…

CVAE——生成0-9数字图像(Pytorch+mnist)

1、简介 CVAE&#xff08;Conditional Variational Autoencoder&#xff0c;条件变分自编码器&#xff09;是一种变分自编码器&#xff08;VAE&#xff09;的变体&#xff0c;用于生成有条件的数据。在传统的变分自编码器中&#xff0c;生成的数据是完全由潜在变量决定的&…

STM32 字符数组结束符 “\0”

STM32 字符数组结束符 “\0” 使用字符数组使用printf&#xff0c;string参考 使用字符数组 使用STM32的串口发送数据&#xff0c;核心代码如下&#xff1a; char str[] "hello world!\n\r";while(1) {HAL_UART_Transmit(&huart2, str, sizeof (str), 10);HAL…

设计模式深度解析:AI如何影响装饰器模式与组合模式的选择与应用

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》《MYSQL应用》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 AI如何影响装饰器模式与组合模式的选择与应用 在今天这个快速发展的技术时代&#…