开源模型应用落地-chatglm3-6b模型小试-入门篇(一)

  一、前言

     刚开始接触AI时,您可能会感到困惑,因为面对众多开源模型的选择,不知道应该选择哪个模型,也不知道如何调用最基本的模型。但是不用担心,我将陪伴您一起逐步入门,解决这些问题。

     在信息时代,我们可以轻松地通过互联网获取大量的理论知识和概念。然而,仅仅掌握理论知识并不能真正帮助我们成长和进步。实践是将理论知识转化为实际技能和经验的关键。

    我将引导您以最低的成本运行ChatGLM3-6b模型,让您体验到它带来的美妙特性。

    qwen模型教程入口:

开源模型应用落地-qwen模型小试-入门篇(一)_qwen文本分类-CSDN博客

    baichuan模型教程入口:

开源模型应用落地-baichuan模型小试-入门篇(一)-CSDN博客


二、术语

2.1. 智谱AI

    是由清华大学计算机系技术成果转化而来的公司,致力于打造新一代认知智能通用模型。公司合作研发了双语千亿级超大规模预训练模型GLM-130B,并构建了高精度通用知识图谱,形成数据与知识双轮驱动的认知引擎,基于此模型打造了ChatGLM(chatglm.cn)。此外,智谱AI还推出了认知大模型平台Bigmodel.ai,包括CodeGeeX和CogView等产品,提供智能API服务,链接物理世界的亿级用户、赋能元宇宙数字人、成为具身机器人的基座,赋予机器像人一样“思考”的能力。

2.2. ChatGLM3

    是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:

  1. 更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,* ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能*。
  2. 更完整的功能支持: ChatGLM3-6B 采用了全新设计的 Prompt 格式 ,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。
  3. 更全面的开源序列: 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM3-6B-Base 、长文本对话模型 ChatGLM3-6B-32K 和进一步强化了对于长文本理解能力的 ChatGLM3-6B-128K。以上所有权重对学术研究完全开放 ,在填写 问卷 进行登记后亦允许免费商业使用

三、前置条件

3.1. windows操作系统

3.2. 下载chatglm3-6b模型

从huggingface下载:https://huggingface.co/THUDM/chatglm3-6b/tree/main

从魔搭下载:魔搭社区汇聚各领域最先进的机器学习模型,提供模型探索体验、推理、训练、部署和应用的一站式服务。https://www.modelscope.cn/models/ZhipuAI/chatglm3-6b/filesicon-default.png?t=N7T8https://www.modelscope.cn/models/ZhipuAI/chatglm3-6b/files

3.3. 创建虚拟环境&安装依赖

conda create --name chatglm3 python=3.10
conda activate chatglm3
pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 sentencepiece accelerate

四、技术实现

4.1. 本地推理

#Tokenizer加载

def loadTokenizer():tokenizer = AutoTokenizer.from_pretrained(modelPath, use_fast=False, trust_remote_code=True)return tokenizer

#Model加载

def loadModel():model = AutoModelForCausalLM.from_pretrained(modelPath, device_map="auto",  trust_remote_code=True).eval()print(model)return model

#推理执行结果如下:

def chat(model, tokenizer, message):try:for response in model.stream_chat(tokenizer, message):_answer,_history = responseyield _answerexcept Exception:traceback.print_exc()

4.2. 完整代码

# -*-  coding = utf-8 -*-
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import tracebackmodelPath = "E:\\model\\chatglm3-6b"def chat(model, tokenizer, message):try:for response in model.stream_chat(tokenizer, message):_answer,_history = responseyield _answerexcept Exception:traceback.print_exc()def loadTokenizer():tokenizer = AutoTokenizer.from_pretrained(modelPath, use_fast=False, trust_remote_code=True)return tokenizerdef loadModel():model = AutoModelForCausalLM.from_pretrained(modelPath, device_map="auto",  trust_remote_code=True).eval()#print(model)return modelif __name__ == '__main__':model = loadModel()tokenizer = loadTokenizer()message = "你是谁?"response = chat(model, tokenizer, message)for answer in response:print(answer)

运行结果:


五、附带说明

5.1.ChatGLM3-6B vs Qwen1.5-7B-Chat

1) 推理实现的代码差异

ChatGLM3:

    for response in model.stream_chat(tokenizer,message, history)

       ......

QWen1.5:

    generation_kwargs = dict(inputs=model_inputs.input_ids, streamer=streamer)

    thread = Thread(target=model.generate, kwargs=generation_kwargs)

    thread.start()

        for response in streamer:
            ......

2) 对话格式差异

ChatGLM3:

<|system|>
You are a helpful assistant.
<|user|>
我家在广州,很好玩哦
<|assistant|>
广州是一个美丽的城市,有很多有趣的地方可以去。

QWen1.5:

<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
我家在广州,很好玩哦<|im_end|>
<|im_start|>assistant
广州是一个美丽的城市,有很多有趣的地方可以去。<|im_end|>

3) 模型参数

ChatGLM3-6BQWen1.5-7B-Chat
n_layers2832
n_heads3232
vocab size65,024151,851
sequence length81928192

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/296354.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

5.3.1 配置交换机 SSH 管理和端口安全

5.3.1 实验1:配置交换机基本安全和 SSH管理 1、实验目的 通过本实验可以掌握&#xff1a; 交换机基本安全配置。SSH 的工作原理和 SSH服务端和客户端的配置。 2、实验拓扑 交换机基本安全和 SSH管理实验拓扑如图所示。 交换机基本安全和 SSH管理实验拓扑 3、实验步骤 &a…

Nginx从安装到高可用实用教程!

一、Nginx安装 1、去官网http://nginx.org/下载对应的nginx包&#xff0c;推荐使用稳定版本 2、上传nginx到linux系统 3、安装依赖环境 (1)安装gcc环境 yum install gcc-c(2)安装PCRE库&#xff0c;用于解析正则表达式 yum install -y pcre pcre-devel(3)zlib压缩和解压缩…

Linux项目自动化构建工具 --- make/Makefile

文章目录 make/Makefile文件1 背景2 理解2.1 创建执行代码2.2 创建makefile文件2.3 运行make指令2.3.1 依赖关系2.3.2 依赖方法2.3.3 原理 2.4 项目清理 make/Makefile文件 1 背景 会不会写makefile&#xff0c;从一个侧面说明了一个人是否具备完成大型工程的能力一个工程中的…

鸿蒙OS开发实例:【应用事件打点】

简介 传统的日志系统里汇聚了整个设备上所有程序运行的过程流水日志&#xff0c;难以识别其中的关键信息。因此&#xff0c;应用开发者需要一种数据打点机制&#xff0c;用来评估如访问数、日活、用户操作习惯以及影响用户使用的关键因素等关键信息。 HiAppEvent是在系统层面…

分布式链路追踪与云原生可观测性

分布式链路追踪系统历史 Dapper, a Large-Scale Distributed Systems Tracing Infrastructure - Google Dapper&#xff0c;大规模分布式系统的跟踪系统大规模分布式系统的跟踪系统&#xff1a;Dapper设计给我们的启示 阿里巴巴鹰眼技术解密 - 周小帆京东云分布式链路追踪在金…

【机器学习】“强化机器学习模型:Bagging与Boosting详解“

1. 引言 在当今数据驱动的世界里&#xff0c;机器学习技术已成为解决复杂问题和提升决策制定效率的关键工具。随着数据的增长和计算能力的提升&#xff0c;传统的单一模型方法已逐渐无法满足高精度和泛化能力的双重要求。集成学习&#xff0c;作为一种结合多个学习算法以获得比…

Spring Boot中前端通过请求接口下载后端存放的Excel模板

导出工具类 package com.yutu.garden.utils;import com.baomidou.mybatisplus.core.toolkit.ObjectUtils; import org.apache.commons.io.IOUtils; import org.apache.poi.hssf.util.HSSFColor; import org.apache.poi.xssf.usermodel.XSSFWorkbook; import org.slf4j.Logger;…

vue项目引入微信sdk: npm install weixin-js-sdk --save报错

网上查到要用淘宝的镜像 同事告知旧 域名&#xff1a;https://registry.npm.taobao.org/已经不能再使用 使用 npm config set registry http://registry.npmmirror.com

[力扣]根据前中序构造二叉树--详细解析

根据前中序遍历顺序构建一个二叉树 力扣练习链接 过程 总体框架 设preorder的左边界为pleft,右边界为pright[注意这里是闭区间能取到]同时设inorder的左边界为ileft,有边界为iright[同样也是可以取到的索引区间]我们生成每一个区间的树的头结点,然后向上返回,对于他的父亲结点…

基于ssm的轻型卡车零部件销售平台(java项目+文档+源码)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的轻型卡车零部件销售平台。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 轻型卡车零部件销售平台…

Unity类银河恶魔城学习记录12-2 p124 Character Stats UI源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili UI_Statslot.cs using System.Collections; using System.Collections.Gen…

Hadoop和zookeeper集群相关执行脚本(未完,持续更新中~)

1、Hadoop集群查看状态 搭建Hadoop数据集群时&#xff0c;按以下路径操作即可生成脚本 [test_1analysis01 bin]$ pwd /home/test_1/hadoop/bin [test_01analysis01 bin]$ vim jpsall #!/bin/bash for host in analysis01 analysis02 analysis03 do echo $host s…

Windows下Docker搭建Flink集群

编写docker-compose.yml 参照&#xff1a;https://github.com/docker-flink/examples/blob/master/docker-compose.yml version: "2.1" services:jobmanager:image: flink:1.14.4-scala_2.11expose:- "6123"ports:- "18081:8081"command: jobma…

防止推特Twitter账号被冻结,应该选什么代理类型IP?

在处理多个 Twitter 帐号时&#xff0c;选择合适的代理IP对于避免大规模帐户暂停至关重要。现在&#xff0c;问题出现了&#xff1a;哪种类型的代理是满足您需求的最佳选择&#xff1f;下面文章将为你具体讲解推特账号冻结原因以及重点介绍如何选择代理IP。 一、推特账号被冻结…

vue 数据埋点

最近菜鸟做项目&#xff0c;需要做简单的数据埋点&#xff0c;不是企业级的&#xff0c;反正看渡一的视频&#xff0c;企业级特别复杂&#xff0c;包括但不限于&#xff1a;错误收集、点击地方、用户行为…… 菜鸟的需求就是简单收集一下用户的ip、地址、每个界面的访问时间&a…

计算机网络-HTTP相关知识-HTTP的发展

HTTP/1.1 特点&#xff1a; 简单&#xff1a;HTTP/1.1的报文格式包括头部和主体&#xff0c;头部信息是键值对的形式&#xff0c;使得其易于理解和使用。灵活和易于扩展&#xff1a;HTTP/1.1的请求方法、URL、状态码、头字段等都可以自定义和扩展&#xff0c;使得其具有很高的…

【SpringCloud】Ribbon 负载均衡

目 录 一.负载均衡原理二.源码跟踪1. LoadBalancerIntercepor2. LoadBalancerClient3. 负载均衡策略 IRule4. 总结 三.负载均衡策略1.负载均衡策略2.自定义负载均衡策略 四.饥饿加载 在 order-service 中 添加了 LoadBalanced 注解&#xff0c;即可实现负载均衡功能&#xff0c…

Ubuntu20.04使用Neo4j导入CSV数据可视化知识图谱

1.安装JDK&#xff08; Ubuntu20.04 JDK11&#xff09; sudo apt-get install openjdk-11-jdk -y java -version which java ls -l /usr/bin/java ls -l /etc/alternatives/java ls -l /usr/lib/jvm/java-11-openjdk-amd64/bin/java确认安装路径为/usr/lib/jvm/java-11-openjd…

Flutter iOS上架指南

本文探讨了使用Flutter开发的iOS应用能否上架&#xff0c;以及上架的具体流程。苹果提供了App Store作为正式上架渠道&#xff0c;同时也有TestFlight供开发者进行内测。合规并通过审核后&#xff0c;Flutter应用可以顺利上架。但上架过程可能存在一些挑战&#xff0c;因此可能…

三星加强Bixby智能:迈向生成式AI,抗衡谷歌Gemini

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…