刷题DAY44 | 完全背包问题 LeetCode 518-零钱兑换 II 377-组合总和 Ⅳ

完全背包问题模版

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。

依然举这个例子:

背包最大重量为4。物品为:

重量价值
物品0115
物品1320
物品2430

每件商品都有无限个!

问背包能背的物品最大价值是多少?

01背包和完全背包唯一不同就是体现在遍历顺序上

回顾一下01背包的核心代码

for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。

而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:

// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。

在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!

因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。

代码实现1:

// 先遍历物品,再遍历背包
void test_CompletePack() {vector<int> weight = {1, 3, 4};vector<int> value = {15, 20, 30};int bagWeight = 4;vector<int> dp(bagWeight + 1, 0);for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}cout << dp[bagWeight] << endl;
}
int main() {test_CompletePack();
}

代码实现2:

// 先遍历背包,再遍历物品
void test_CompletePack() {vector<int> weight = {1, 3, 4};vector<int> value = {15, 20, 30};int bagWeight = 4;vector<int> dp(bagWeight + 1, 0);for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量for(int i = 0; i < weight.size(); i++) { // 遍历物品if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}cout << dp[bagWeight] << endl;
}
int main() {test_CompletePack();
}

详细解析:
思路视频
代码实现文章



完全背包问题应用

518 零钱兑换 II(medium)

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。

假设每一种面额的硬币有无限个。

题目数据保证结果符合 32 位带符号整数。

思路:完全背包问题,本题为组合,关键在于内外侧循环的顺序

注意题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢?

例如示例一:

5 = 2 + 2 + 1

5 = 2 + 1 + 2

这是一种组合,都是 2 2 1。

如果问的是排列数,那么上面就是两种排列了。

组合不强调元素之间的顺序,排列强调元素之间的顺序。

回归本题,动规五步曲来分析如下:

  1. 确定dp数组以及下标的含义

dp[j]:凑成总金额j的货币组合数为dp[j]

  1. 确定递推公式

dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。

所以递推公式:dp[j] += dp[j - coins[i]];

  1. dp数组如何初始化

首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。

那么 dp[0] = 1 有没有含义,其实既可以说 凑成总金额0的货币组合数为1,也可以说 凑成总金额0的货币组合数为0,好像都没有毛病。

但题目描述中,也没明确说 amount = 0 的情况,结果应该是多少。后台测试数据是默认,amount = 0 的情况,组合数为1的。

下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]

dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。

  1. 确定遍历顺序

本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额),还是外层for遍历背包(金钱总额),内层for循环遍历物品(钱币)呢?

纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!

而本题要求凑成总和的组合数,元素之间明确要求没有顺序。

所以纯完全背包是能凑成总和就行,不用管怎么凑的。

本题是求凑出来的方案个数,且每个方案个数是为组合数。

那么本题,两个for循环的先后顺序可就有说法了。

先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。

代码如下:

for (int i = 0; i < coins.size(); i++) { // 遍历物品for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量dp[j] += dp[j - coins[i]];}
}

假设:coins[0] = 1,coins[1] = 5。

那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。

所以这种遍历顺序中dp[j]里计算的是组合数!

如果把两个for交换顺序,代码如下:

for (int j = 0; j <= amount; j++) { // 遍历背包容量for (int i = 0; i < coins.size(); i++) { // 遍历物品if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];}
}

背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。

此时dp[j]里算出来的就是排列数!

  1. 举例推导dp数组

输入: amount = 5, coins = [1, 2, 5] ,dp状态图如下:
在这里插入图片描述
最后红色框dp[amount]为最终结果。

代码实现:

class Solution {
public:int change(int amount, vector<int>& coins) {vector<int> dp(amount + 1, 0);dp[0] = 1;for (int i = 0; i < coins.size(); i++) { // 遍历物品for (int j = coins[i]; j <= amount; j++) { // 遍历背包dp[j] += dp[j - coins[i]];}}return dp[amount];}
};

时间复杂度: O(mn),其中 m 是amount,n 是 coins 的长度
空间复杂度: O(m)

详细讲解:
思路视频
代码实现文章


377 组合总和 Ⅳ(medium)

给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。

题目数据保证答案符合 32 位整数范围。

思路:完全背包问题,本题为排列,关键在于内外侧循环的顺序

代码实现:

class Solution {
public:int combinationSum4(vector<int>& nums, int target) {vector<int> dp(target + 1, 0);dp[0] = 1;for (int i = 0; i <= target; i++) { // 遍历背包for (int j = 0; j < nums.size(); j++) { // 遍历物品if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {dp[i] += dp[i - nums[j]];}}}return dp[target];}
};
  • 时间复杂度: O(target * n),其中 n 为 nums 的长度
  • 空间复杂度: O(target)

C++测试用例有两个数相加超过int的数据,所以需要在if里加上dp[i] < INT_MAX - dp[i - num]。

详细讲解:
思路视频
代码实现文章

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/296712.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Oracle篇】expdp/impdp高效完成全部生产用户的全库迁移(第四篇,总共四篇)

☘️博主介绍☘️&#xff1a; ✨又是一天没白过&#xff0c;我是奈斯&#xff0c;DBA一名✨ ✌✌️擅长Oracle、MySQL、SQLserver、Linux&#xff0c;也在扩展大数据方向的知识面✌✌️ ❣️❣️❣️大佬们都喜欢静静的看文章&#xff0c;并且也会默默的点赞收藏加关注❣️❣️…

C++中的vector与C语言中的数组的区别

C中的vector和C语言中的数组在很多方面都有所不同&#xff0c;以下是它们之间的一些主要区别&#xff1a; 大小可变性&#xff1a; vector是C标准模板库&#xff08;STL&#xff09;提供的动态数组容器&#xff0c;它的大小可以动态增长或减少。这意味着你可以在运行时添加或删…

物联网实战--入门篇之(七)嵌入式-MQTT

目录 一、MQTT简介 二、MQTT使用方法 三、MQTT驱动设计 四、代码解析 五、使用过程 六、总结 一、MQTT简介 MQTT因为其轻量、高效和稳定的特点&#xff0c;特别适合作为物联网系统的数据传输协议&#xff0c;已经成为物联网事实上的通信标准了。关于协议的具体内容看看这…

校园局域网钓鱼实例

Hello &#xff01; 我是"我是小恒不会java" 本文仅作为针对普通同学眼中的网络安全&#xff0c;设计的钓鱼案例也是怎么简陋怎么来 注&#xff1a;本文不会外传代码&#xff0c;后端已停止使用&#xff0c;仅作为学习使用 基本原理 内网主机扫描DNS劫持前端模拟后端…

图论基础(python蓝桥杯)

图的基本概念 图的种类 怎么存放图呢&#xff1f; 优化 DFS 不是最快/最好的路&#xff0c;但是能找到一条连通的道路。&#xff08;判断两点之间是不是连通的&#xff09; 蓝桥3891 import os import sys sys.setrecursionlimit(100000) # 请在此输入您的代码 n, m map(int,…

【Frida】【Android】 07_爬虫之网络通信库HttpURLConnection

&#x1f6eb; 系列文章导航 【Frida】【Android】01_手把手教你环境搭建 https://blog.csdn.net/kinghzking/article/details/136986950【Frida】【Android】02_JAVA层HOOK https://blog.csdn.net/kinghzking/article/details/137008446【Frida】【Android】03_RPC https://bl…

SQL server 查询数据库中所有的表名及行数

SQL server 查询数据库中所有的表名及行数 select a.name,b.rows from sysobjects as ainner join sysindexes as bon a.id b.id where (a.type u)and (b.indid in (0, 1)) and b.rows<50 and b.rows>20 order by a.name, b.rows desc;

图像处理_积分图

目录 1. 积分图算法介绍 2. 基本原理 2.1 构建积分图 2.2 使用积分图 3. 举个例子 1. 积分图算法介绍 积分图算法是图像处理中的经典算法之一&#xff0c;由Crow在1984年首次提出&#xff0c;它是为了在多尺度透视投影中提高渲染速度。 积分图算法是一种快速计算图像区域和…

Ceph分布式存储系统以及高可用原理

Ceph分布式存储系统以及高可用原理 1. Ceph原理和架构1.1 分布式存储系统抽象1.2 Ceph基本组件 2 Ceph中的策略层2.1 CRUSH进行数据分发和定位2.2 PG(Placement Group): 集群管理的基本单元2.3 PG的代理primary OSD2.4 轻量级的集群元数据ClusterMap2.5 对PG的罗辑分组&#xf…

观察和配置MAC地址表

目录 原理概述 实验目的 实验内容 实验拓扑 ​编辑1&#xff0e;基本配置 2.观察正常状态时的MAC地址表 4.配置静态MAC地址表项 原理概述 MAC 地址表是交换机的一个核心组成部分&#xff0c;交换机主要是根据 MAC 地址表来进行帧的转发的。交换机对帧的转发操作行为一共有…

车道线检测_Canny算子边缘检测_1

Canny算子边缘检测&#xff08;原理&#xff09; Canny算子边缘检测是一种经典的图像处理算法&#xff0c;由John F. Canny于1986年提出&#xff0c;用于精确、可靠地检测数字图像中的边缘特征。该算法设计时考虑了三个关键目标&#xff1a;低错误率&#xff08;即尽可能多地检…

【漏洞复现】WordPress Plugin LearnDash LMS 敏感信息暴漏

漏洞描述 WordPress和WordPress plugin都是WordPress基金会的产品。WordPress是一套使用PHP语言开发的博客平台。该平台支持在PHP和MySQL的服务器上架设个人博客网站。WordPress plugin是一个应用插件。 WordPress Plugin LearnDash LMS 4.10.2及之前版本存在安全漏洞&#x…

从汇编看函数调用

文章目录 函数调用流程栈相关寄存器及的作用简介寄存器功能指令功能 栈函数的括号{}正括号反括号 参数传递传值&#xff0c;变量不可改传指针&#xff0c;变量可改C 传引用 函数调用实例 函数调用流程 目标&#xff1a;函数调用前后栈保持不变 保存main函数的寄存器上下文移…

使用MySQL和PHP创建一个公告板

目录 一、创建表 二、制作首页&#xff08;创建主题以及显示列表&#xff09; 三、制作各个主题的页面&#xff08;输入回帖和显示列表&#xff09; 四、制作消息的查询界面 五、制作读取数据库信息的原始文件 六、制作数据重置页面 七、效果图 八、问题 1、目前无法处…

商务电子邮件: 在WorkPlace中高效且安全

高效和安全的沟通是任何组织成功的核心。在我们关于电子邮件类型的系列文章的第二期中&#xff0c;我们将重点关注商业电子邮件在促进无缝交互中的关键作用。当你身处重要的工作场环境时&#xff0c;本系列的每篇文章都提供了电子邮件的不同维度的视角。 “2024年&#xff0c;全…

基于springboot实现房屋租赁管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现房屋租赁系统演示 摘要 房屋是人类生活栖息的重要场所&#xff0c;随着城市中的流动人口的增多&#xff0c;人们对房屋租赁需求越来越高&#xff0c;为满足用户查询房屋、预约看房、房屋租赁的需求&#xff0c;特开发了本基于Spring Boot的房屋租赁系统。 …

保健品wordpress外贸模板

保健品wordpress外贸模板 健康保养保健品wordpress外贸模板&#xff0c;做大健康行业的企业官方网站模板。 https://www.jianzhanpress.com/?p3514

防火墙状态检测和会话机制

FW对TCP&#xff0c;UDP和ICMP协议的报文创建会话

【如何解决一些常见的 Composer 错误的保姆级讲解】

&#x1f308;个人主页:程序员不想敲代码啊&#x1f308; &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家&#x1f3c6; &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提…

如何使用免费的ChatGpt3.5

如何使用免费的ChatGpt 最近免费的gpt3.5很多都不怎么行了实在是太给力了尾声 最近免费的gpt3.5很多都不怎么行了 原因是什么呢&#xff1f;因为openai已经取消了免费的5刀赠送&#xff0c;那么这些人手上的免费的sses-key 用完后&#xff0c;就基本上全军覆没了&#xff0c;再…