C++多线程:单例模式与共享数据安全(七)

1、单例设计模式
  • 单例设计模式,使用的频率比较高,整个项目中某个特殊的类对象只能创建一个

  • 并且该类只对外暴露一个public方法用来获得这个对象。

  • 单例设计模式又分懒汉式和饿汉式,同时对于懒汉式在多线程并发的情况下存在线程安全问题

    • 饿汉式:类加载的准备阶段就会将static变量、代码块进行实例化,最后只暴露一个public方法获得实例对象。

    • 懒汉式:当需要用到的时候再去加载这个对象。这时多线程的情况下可能存在线程安全问题

  • 对于饿汉式这里不做具体的解释,本节只讨论多线程与懒汉式的线程安全问题

2、单线程下的懒汉模式
2.1、单例对象的创建:
  • 将类指针对象进行静态私有化,并且在类外初始化这个对象为空;静态能保证的是这个对象属于这个类不属于任何一个对象
  • 私有化空构造器防止可以实例化对象
  • 对外暴露一个public方法获取该对象,如果在获取时发现该对象为空,那么进行实例化,否则直接返回
  • 因此可以看到实例化只有一次,多次获取到的对象的地址属于同一个
class Single_Instance {
private:static Single_Instance *instance;Single_Instance() {}
public:static Single_Instance *get_Instance(){if(instance == NULL){instance = new Single_Instance();}return instance;}void func(){std::cout << "func(), &instance = " << instance << std::endl;}
};
Single_Instance *Single_Instance::instance = NULL;void test1()
{Single_Instance *instance1 = Single_Instance::get_Instance();Single_Instance *instance2 = Single_Instance::get_Instance();instance1->func();instance2->func();
}# 输出
func(), &instance = 0x5652eefede70
func(), &instance = 0x5652eefede70
2.2、单例对象的析构
  • 很明显上面的代码缺少一个析构函数,并且似乎无从下手找一个合适的时机对其进行析构,只能等待程序运行结束操作系统回收?
  • 其实可以通过内部类的方式进行析构
    • 首先在单例类内部进行私有化一个内部类
    • 对外暴露的public获取instance的对象接口在new实例化对象的时候创建一个内部类静态成员
    • 内部类静态成员的好处是只有一份
    • 当作用域结束时内部类就会负责析构掉主类的静态成员对象
class Single_Instance {
private:static Single_Instance *instance;Single_Instance() {}class inner_class {public:~inner_class(){if(Single_Instance::instance){delete Single_Instance::instance;Single_Instance::instance = NULL;std::cout << "inner_class::~inner_class(), 析构Single_Instance::instance对象" << std::endl;}}};
public:static Single_Instance *get_Instance(){if(instance == NULL){instance = new Single_Instance();static inner_class innerClass;}return instance;}void func(){std::cout << "func(), &instance = " << instance << std::endl;}
};
Single_Instance *Single_Instance::instance = NULL;void test1()
{Single_Instance *instance1 = Single_Instance::get_Instance();Single_Instance *instance2 = Single_Instance::get_Instance();instance1->func();instance2->func();
}
#输出
func(), &instance = 0x558eb768de70
func(), &instance = 0x558eb768de70
inner_class::~inner_class(), 析构Single_Instance::instance对象
3、单例模式与多线程
  • 单例模式的对象可能会被多个线程使用,但是又必须保证这个单例的对象只有一份

  • 不能重复创建、也必须保证这个对象在多线程使用过程中不会因为创建而产生数据安全问题,即多线程抢占的创建这一个对象

class Single_Instance {
private:static Single_Instance *instance;Single_Instance() {}class inner_class {public:~inner_class(){if(Single_Instance::instance){delete Single_Instance::instance;Single_Instance::instance = NULL;std::cout << "inner_class::~inner_class(), 析构Single_Instance::instance对象" << std::endl;}}};
public:static Single_Instance *get_Instance(){if(instance == NULL){instance = new Single_Instance();static inner_class innerClass;}return instance;}void func(){std::cout << "func(), &instance = " << instance << std::endl;}
};
Single_Instance *Single_Instance::instance = NULL;void thread_func()
{std::cout << "子线程开始执行了" << std::endl;Single_Instance *instance = Single_Instance::get_Instance();std::cout << "thread_func, &instance = " << instance << std::endl;std::cout << "子线程执行结束了" << std::endl;
}void test2()
{std::thread mythread1(thread_func);std::thread mythread2(thread_func);std::thread mythread3(thread_func);std::thread mythread4(thread_func);mythread1.join();mythread2.join();mythread3.join();mythread4.join();
}

在这里插入图片描述
可以看到实例化不止一个单例对象,这一现象违反了单例的思想,因此需要在多线程抢占创建时进行互斥(mutex)

3.1、解决方案(一)
  • 使用互斥量的方式,对线程访问获取对象进行阻塞
  • 但是不难发现问题,其实这个对象只创建一次,之后的访问单纯的获取这个对象也要进行加锁逐个排队访问临界区,这一现象导致效率极低
std::mutex mutex_lock;
class Single_Instance {
private:static Single_Instance *instance;Single_Instance() {}class inner_class {public:~inner_class(){if(Single_Instance::instance){delete Single_Instance::instance;Single_Instance::instance = NULL;std::cout << "inner_class::~inner_class(), 析构Single_Instance::instance对象" << std::endl;}}};
public:static Single_Instance *get_Instance(){std::unique_lock<std::mutex> uniqueLock(mutex_lock);if(instance == NULL){instance = new Single_Instance();static inner_class innerClass;}return instance;}void func(){std::cout << "func(), &instance = " << instance << std::endl;}
};
Single_Instance *Single_Instance::instance = NULL;void thread_func()
{std::cout << "子线程开始执行了" << std::endl;Single_Instance *instance = Single_Instance::get_Instance();std::cout << "thread_func, &instance = " << instance << std::endl;std::cout << "子线程执行结束了" << std::endl;
}void test2()
{std::thread mythread1(thread_func);std::thread mythread2(thread_func);std::thread mythread3(thread_func);std::thread mythread4(thread_func);mythread1.join();mythread2.join();mythread3.join();mythread4.join();
}
3.2、解决方式(二)

双重检查机制(DCL)进行绝对安全解决

  • 双重检查:
    • 首先在锁外面加入一个if判断,判断这个对象是否存在,如果存在就没有必要上锁创建,直接返回即可
    • 如果对象不存在,首选进行加锁,然后在if判断对象是否存在,这个if的意义在于当多个线程阻塞在mutex锁头上时
    • 突然有一个线程1创建好了,那么阻塞在mutex锁头上的线程2、3、4…都不用再继续创建,因此在加一个if判断

这里还需要解释一下volatile关键字:

  • volatile关键字的作用是防止cpu指令重排序,重排序的意思就是干一件事123的顺序,cpu可能重排序为132

  • 为什么需要防止指令重排序,因为对象的new过程分为三部曲:

    (1)分配内存空间、(2)执行构造方法初始化对象、(3)将这个对象指向这个空间;

    由于程序运行CPU会进行指令的重排序,如果执行的指令是132顺序,A线程执行完13之后并没有完成对象的初始化、而这时候转到B线程;B线程认为对象已经实例化完毕、其实对象并没有完成初始化!产生错误

  • 但这个问题在C++11中已经禁止了重排序,因此不需要使用volatile关键字,但在Java和一些其他语言中可能有,Java中这个关键字是针对即时编译器JIT进行指令重排序的

static Single_Instance *get_Instance(){if(instance == NULL){std::unique_lock<std::mutex> uniqueLock(mutex_lock);if(instance == NULL){instance = new Single_Instance();static inner_class innerClass;}}return instance;
}

只需要把上面的代码改成这个样子即可

4、std::call_once()
  • std::call_once()是C++11引入的函数,该函数的功能就是保证一个方法只会被调用一次。

    • 参数二:一个函数名func

    • 参数一:std::once_flag一个标记,本质是一个结构体。该标志可以用于标记参数二该函数是否已经调用过了

    • 参数三:参数二函数的参数

  • std::call_once()具有互斥量的这种能力,且效率上比mutex互斥量效率更高,因此也可以使用这个函数对单例的线程安全进行保证

    • 当call_once调用过一次之后,std::once_flag将会被修改标记(已调用),那么之后都不会在调用
  • 下面看个代码举例,可以看到create_Instance()函数中对于这个函数只执行了一次,完全ojbk。

class Single_Instance {
private:static Single_Instance *instance;static std::once_flag instance_flag;Single_Instance() {}class inner_class {public:~inner_class(){if(Single_Instance::instance){delete Single_Instance::instance;Single_Instance::instance = NULL;std::cout << "inner_class::~inner_class(), 析构Single_Instance::instance对象" << std::endl;}}};
public:static void create_Instance(){instance = new Single_Instance();static inner_class innerClass;}static Single_Instance *get_Instance(){std::call_once(instance_flag, create_Instance);return instance;}void func(){std::cout << "func(), &instance = " << instance << std::endl;}
};
Single_Instance *Single_Instance::instance = NULL;
std::once_flag Single_Instance::instance_flag;void thread_func()
{std::cout << "子线程开始执行了" << std::endl;Single_Instance *instance = Single_Instance::get_Instance();std::cout << "thread_func, &instance = " << instance << std::endl;std::cout << "子线程执行结束了" << std::endl;
}void test3()
{std::thread mythread1(thread_func);std::thread mythread2(thread_func);std::thread mythread3(thread_func);std::thread mythread4(thread_func);mythread1.join();mythread2.join();mythread3.join();mythread4.join();
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/296849.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【原创】基于分位数回归的卷积长短期结合注意力机制的神经网络(CNN-QRLSTM-Attention)回归预测的MATLAB实现

基于分位数回归的卷积长短期结合注意力机制的神经网络&#xff08;CNN-QRLSTM-Attention&#xff09;是一种用于时间序列数据预测的深度学习模型。该模型结合了卷积神经网络&#xff08;CNN&#xff09;、长短期记忆网络&#xff08;LSTM&#xff09;和注意力机制&#xff08;A…

C语言实现通讯录(从0-1的项目)

一、前言 1、实现通讯录首先我们要了解并懂得如何通过C语言来完成有关顺序表的实现 2、需要了解的内容&#xff1a;如何使用顺序表结构实现增、删、改、查等操作 二、顺序表的认识和实现 1、什么是顺序表 最基础的数据结构就是数组。 顺序表则是线性表的一种&#xff0c;…

图片改大小尺寸怎么改?几个修改图片尺寸的方法

日常生活和工作中&#xff0c;图片的大小和尺寸对于我们的工作和生活都至关重要&#xff0c;因此我们经常需要调整图片的大小。我们都知道压缩图是一款功能强大的图片在线处理工具&#xff0c;那么用它怎么调整图片大小呢&#xff1f;下面就让我们一起来看一下具体的操作步骤。…

基于Spring Boot的在线考试系统

开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09; 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;eclipse/myeclipse/idea Maven…

实时渲染 -- 材质(Materials)

一、自然界中的材质 首先了解下自然界中的材质 如上这幅图&#xff0c;不同的物体、场景、组合&#xff0c;会让我们看到不同的效果。 我们通常认为物体由其表面定义&#xff0c;表面是物体和其他物体或周围介质之间的边界面。但是物体内部的材质也会影响光照效果。我们目前只…

微服务(基础篇-008-es、kibana安装)

目录 05-初识ES-安装es_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1LQ4y127n4?p81&vd_source60a35a11f813c6dff0b76089e5e138cc 1.部署单点es 1.1.创建网络 1.2.加载镜像 1.3.运行 2.部署kibana 2.1.部署 2.2.DevTools 3.安装IK分词器 3.1.在线安装ik…

【IP组播】PIM-SM的RP、RPF校验

目录 一&#xff1a;PIM-SM的RP 原理概述 实验目的 实验内容 实验拓扑 1.基本配置 2.配置IGP 3.配置PIM-SM和静态RP 4.配置动态RP 5.配置Anycast RP 二&#xff1a; RPF校验 原理概述 实验目的 实验内容 实验拓扑 1.基本配置 2.配置IGP 3.配置PIM-DM 4.RPF校…

【洛谷 P8695】[蓝桥杯 2019 国 AC] 轨道炮 题解(映射+模拟+暴力枚举+桶排序)

[蓝桥杯 2019 国 AC] 轨道炮 题目描述 小明在玩一款战争游戏。地图上一共有 N N N 个敌方单位&#xff0c;可以看作 2D 平面上的点。其中第 i i i 个单位在 0 0 0 时刻的位置是 ( X i , Y i ) (X_i, Y_i) (Xi​,Yi​)&#xff0c;方向是 D i D_i Di​ (上下左右之一, 用…

基于Spring Boot的餐厅点餐系统

基于Spring Boot的餐厅点餐系统 开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;Maven3.3.9 部分系统展示 管理员登录界面 用户注册登录界面 …

股权激励和期权激励对比辨析

文章目录 概念定义 收益方式 风险评估 应用和分析 股权激励和期权激励&#xff0c;两者的区别是什么&#xff0c;本文就来梳理对比一下。 概念定义 股权激励&#xff0c;是指上市公司以本公司股票为标的&#xff0c;对其董事、高级管理人员及其他员工进行的长期性激励。取得…

JVM专题——类文件加载

本文部分内容节选自Java Guide和《深入理解Java虚拟机》, Java Guide地址: https://javaguide.cn/java/jvm/class-loading-process.html &#x1f680; 基础&#xff08;上&#xff09; → &#x1f680; 基础&#xff08;中&#xff09; → &#x1f680;基础&#xff08;下&a…

C++从入门到精通——入门知识

1. C关键字(C98) C总计63个关键字&#xff0c;C语言32个关键字 2. 命名空间 在C/C中&#xff0c;变量、函数和后面要学到的类都是大量存在的&#xff0c;这些变量、函数和类的名称都将存在于全局作用域中&#xff0c;可能会导致很多冲突。使用命名空间的目的就是对标识符的名…

ST表---算法

相当于二分的思想&#xff0c;一直比较最值 ST的创建 现在创建成功&#xff0c;是应该如何查询的问题 ST表的查询 虽然这两区间有重叠&#xff0c;但是可以一个往前数&#xff0c;一个往后数&#xff0c;互不影响 时间复杂度 创建st表的复杂度为n*logn 使用时的复杂度为O(…

【机器学习】K-近邻算法(KNN)介绍、应用及文本分类实现

一、引言 1.1 K-近邻算法&#xff08;KNN&#xff09;的基本概念 K-近邻算法&#xff08;K-Nearest Neighbors&#xff0c;简称KNN&#xff09;是一种基于实例的学习算法&#xff0c;它利用训练数据集中与待分类样本最相似的K个样本的类别来判断待分类样本所属的类别。KNN算法…

Golang 哈希表底层实现原理

1、本文讨论Golang的哈希表 Golang哈希表的实现&#xff0c;底层数据结构是数组单链表&#xff0c;链表节点由8个key、value和键的高八位组成的。为了方便理解&#xff0c;先简单看一个图快速理解。 我们来看一下Golang哈希表的结构体定义 简单介绍一下结构体中几个关键的…

.NET CORE 分布式事务(四) CAP实现最终一致性

目录 引言&#xff1a; 1.0 最终一致性介绍 2.0 CAP 2.0 架构预览 3.0 .NET CORE 结合CAP实现最终一致性分布式事务 3.1 准备工作(数据库&#xff0c;本文使用的是MySql) 3.1.1 数据模型 3.1.2 DbContext 3.1.3 数据库最终生成 3.2 Nuget引入 3.3 appsettings.json …

【漏洞复现】极简云 download.php 接口处存在任意文件读取漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

OpenHarmony实战:小型系统平台驱动移植

在这一步&#xff0c;我们会在源码目录//device/vendor_name/soc_name/drivers目录下创建平台驱动。 建议的目录结构&#xff1a; device ├── vendor_name │ ├── drivers │ │ │ ├── common │ │ │ ├── Kconfig # 厂商驱动内核菜单入口 │ …

武汉星起航电子商务公司领航跨境电商新纪元,助力品牌走向全球

在全球经济一体化的时代背景下&#xff0c;跨境电商正成为推动国际贸易增长的重要力量。武汉星起航电子商务有限公司&#xff0c;作为一家专注于提供一站式解决方案的跨境电商服务商&#xff0c;凭借其丰富的实战经验和专业团队&#xff0c;在行业中取得了令人瞩目的成绩。 自…

前端学习<四>JavaScript基础——02-JavaScript入门:hello world

开始写第一行 JavaScript&#xff1a;hello world JS 代码的书写位置在哪里呢&#xff1f;这个问题&#xff0c;也可以理解成&#xff1a;引入 JS 代码&#xff0c;有哪几种方式&#xff1f;有三种方式&#xff1a;&#xff08;和 CSS 的引入方式类似&#xff09; 行内式&…