【原创】基于分位数回归的卷积长短期结合注意力机制的神经网络(CNN-QRLSTM-Attention)回归预测的MATLAB实现

基于分位数回归的卷积长短期结合注意力机制的神经网络(CNN-QRLSTM-Attention)是一种用于时间序列数据预测的深度学习模型。该模型结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)和注意力机制(Attention),以提高时间序列数据的预测性能。以下是该模型的详细介绍:

1. 卷积神经网络(CNN)
卷积神经网络用于时间序列数据的特征提取。CNN在时间序列数据中可以识别不同时间尺度上的模式,因此适用于捕捉时间序列数据的局部特征。CNN通常由一系列卷积层、池化层和激活函数组成,通过卷积操作和池化操作提取时间序列数据中的特征。

2. 长短期记忆网络(LSTM)
长短期记忆网络用于捕捉时间序列数据中的长期依赖关系。LSTM通过门控机制(遗忘门、输入门和输出门)来控制信息的流动,从而有效地捕获时间序列数据中的长期依赖性。LSTM适合处理时间序列数据中的序列建模任务,可以有效地学习时间序列数据中的时间依赖关系。

3. 注意力机制(Attention)
注意力机制用于动态地对输入的不同部分分配不同的注意力权重。在时间序列数据预测中,注意力机制可以帮助模型集中注意力于对预测目标有重要影响的时间步。通过注意力机制,模型可以自适应地学习不同时间步的重要性,从而提高预测性能。

4. CNN-QRLSTM-Attention模型结构
CNN-QRLSTM-Attention模型通常由以下几个部分组成:
卷积层(CNN): 用于时间序列数据的特征提取。
长短期记忆网络(LSTM): 用于捕捉时间序列数据中的长期依赖关系。
注意力机制(Attention): 用于动态地对模型中的不同部分分配注意力权重。
分位数回归(Quantile Regression): 用于预测不同分位数下的目标值,而不仅仅是平均值。
5. CNN-QRLSTM-Attention模型的训练和预测过程
特征提取: 将时间序列数据通过卷积层进行特征提取,得到特征序列。
序列建模: 将特征序列输入到LSTM中,建立时间序列数据的序列模型,以捕获其时间依赖关系。
注意力机制: 使用注意力机制对LSTM输出的特征序列进行加权,以便模型可以集中注意力于对预测目标有重要影响的时间步。
分位数回归: 对加权后的特征序列进行分位数回归,以预测不同分位数下的目标值。
损失计算与优化: 使用损失函数(通常是分位数损失函数)计算预测值与真实值之间的差异,并通过反向传播算法更新模型参数,以最小化损失函数。
预测: 在训练完成后,可以使用该模型对未来的时间序列数据进行预测。
总结
CNN-QRLSTM-Attention模型通过结合卷积神经网络、长短期记忆网络和注意力机制,能够充分挖掘时间序列数据中的特征和依赖关系,并通过分位数回归实现对不同分位数下的目标值的预测,具有较好的预测性能和泛化能力。
部分代码:

 lgraph = layerGraph();                                                 % 建立空白网络结构tempLayers = [sequenceInputLayer([L, 1, 1], "Name", "sequence")                 % 建立输入层,输入数据结构为[f_, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                          % 建立序列折叠层lgraph = addLayers(lgraph, tempLayers);                                % 将上述网络结构加入空白结构中tempLayers = convolution2dLayer([1, 1], 32, "Name", "conv_1");         % 卷积层 卷积核[1, 1] 步长[1, 1] 通道数 32lgraph = addLayers(lgraph,tempLayers);                                 % 将上述网络结构加入空白结构中tempLayers = [reluLayer("Name", "relu_1")                                        % 激活层convolution2dLayer([1, 1], 64, "Name", "conv_2")                   % 卷积层 卷积核[1, 1] 步长[1, 1] 通道数 64reluLayer("Name", "relu_2")                                        % 激活层maxPooling2dLayer([1,1],"Name", "maxpool")];                                      lgraph = addLayers(lgraph, tempLayers);                                % 将上述网络结构加入空白结构中

网络结构:在这里插入图片描述
预测结果:
在这里插入图片描述
回归图和预测误差:
在这里插入图片描述
评价指标:
在这里插入图片描述
**

完整代码获取:CNN-QRLSRM-Attention

**

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/296848.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言实现通讯录(从0-1的项目)

一、前言 1、实现通讯录首先我们要了解并懂得如何通过C语言来完成有关顺序表的实现 2、需要了解的内容:如何使用顺序表结构实现增、删、改、查等操作 二、顺序表的认识和实现 1、什么是顺序表 最基础的数据结构就是数组。 顺序表则是线性表的一种,…

图片改大小尺寸怎么改?几个修改图片尺寸的方法

日常生活和工作中,图片的大小和尺寸对于我们的工作和生活都至关重要,因此我们经常需要调整图片的大小。我们都知道压缩图是一款功能强大的图片在线处理工具,那么用它怎么调整图片大小呢?下面就让我们一起来看一下具体的操作步骤。…

基于Spring Boot的在线考试系统

开发语言:Java 框架:springboot JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7(一定要5.7版本) 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Maven…

实时渲染 -- 材质(Materials)

一、自然界中的材质 首先了解下自然界中的材质 如上这幅图,不同的物体、场景、组合,会让我们看到不同的效果。 我们通常认为物体由其表面定义,表面是物体和其他物体或周围介质之间的边界面。但是物体内部的材质也会影响光照效果。我们目前只…

微服务(基础篇-008-es、kibana安装)

目录 05-初识ES-安装es_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1LQ4y127n4?p81&vd_source60a35a11f813c6dff0b76089e5e138cc 1.部署单点es 1.1.创建网络 1.2.加载镜像 1.3.运行 2.部署kibana 2.1.部署 2.2.DevTools 3.安装IK分词器 3.1.在线安装ik…

【IP组播】PIM-SM的RP、RPF校验

目录 一:PIM-SM的RP 原理概述 实验目的 实验内容 实验拓扑 1.基本配置 2.配置IGP 3.配置PIM-SM和静态RP 4.配置动态RP 5.配置Anycast RP 二: RPF校验 原理概述 实验目的 实验内容 实验拓扑 1.基本配置 2.配置IGP 3.配置PIM-DM 4.RPF校…

【洛谷 P8695】[蓝桥杯 2019 国 AC] 轨道炮 题解(映射+模拟+暴力枚举+桶排序)

[蓝桥杯 2019 国 AC] 轨道炮 题目描述 小明在玩一款战争游戏。地图上一共有 N N N 个敌方单位,可以看作 2D 平面上的点。其中第 i i i 个单位在 0 0 0 时刻的位置是 ( X i , Y i ) (X_i, Y_i) (Xi​,Yi​),方向是 D i D_i Di​ (上下左右之一, 用…

基于Spring Boot的餐厅点餐系统

基于Spring Boot的餐厅点餐系统 开发语言:Java框架:springbootJDK版本:JDK1.8数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:Maven3.3.9 部分系统展示 管理员登录界面 用户注册登录界面 …

股权激励和期权激励对比辨析

文章目录 概念定义 收益方式 风险评估 应用和分析 股权激励和期权激励,两者的区别是什么,本文就来梳理对比一下。 概念定义 股权激励,是指上市公司以本公司股票为标的,对其董事、高级管理人员及其他员工进行的长期性激励。取得…

JVM专题——类文件加载

本文部分内容节选自Java Guide和《深入理解Java虚拟机》, Java Guide地址: https://javaguide.cn/java/jvm/class-loading-process.html 🚀 基础(上) → 🚀 基础(中) → 🚀基础(下&a…

C++从入门到精通——入门知识

1. C关键字(C98) C总计63个关键字,C语言32个关键字 2. 命名空间 在C/C中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称都将存在于全局作用域中,可能会导致很多冲突。使用命名空间的目的就是对标识符的名…

ST表---算法

相当于二分的思想,一直比较最值 ST的创建 现在创建成功,是应该如何查询的问题 ST表的查询 虽然这两区间有重叠,但是可以一个往前数,一个往后数,互不影响 时间复杂度 创建st表的复杂度为n*logn 使用时的复杂度为O(…

【机器学习】K-近邻算法(KNN)介绍、应用及文本分类实现

一、引言 1.1 K-近邻算法(KNN)的基本概念 K-近邻算法(K-Nearest Neighbors,简称KNN)是一种基于实例的学习算法,它利用训练数据集中与待分类样本最相似的K个样本的类别来判断待分类样本所属的类别。KNN算法…

Golang 哈希表底层实现原理

1、本文讨论Golang的哈希表 Golang哈希表的实现,底层数据结构是数组单链表,链表节点由8个key、value和键的高八位组成的。为了方便理解,先简单看一个图快速理解。 我们来看一下Golang哈希表的结构体定义 简单介绍一下结构体中几个关键的…

.NET CORE 分布式事务(四) CAP实现最终一致性

目录 引言: 1.0 最终一致性介绍 2.0 CAP 2.0 架构预览 3.0 .NET CORE 结合CAP实现最终一致性分布式事务 3.1 准备工作(数据库,本文使用的是MySql) 3.1.1 数据模型 3.1.2 DbContext 3.1.3 数据库最终生成 3.2 Nuget引入 3.3 appsettings.json …

【漏洞复现】极简云 download.php 接口处存在任意文件读取漏洞

免责声明:文章来源互联网收集整理,请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失,均由使用者本人负责,所产生的一切不良后果与文章作者无关。该…

OpenHarmony实战:小型系统平台驱动移植

在这一步,我们会在源码目录//device/vendor_name/soc_name/drivers目录下创建平台驱动。 建议的目录结构: device ├── vendor_name │ ├── drivers │ │ │ ├── common │ │ │ ├── Kconfig # 厂商驱动内核菜单入口 │ …

武汉星起航电子商务公司领航跨境电商新纪元,助力品牌走向全球

在全球经济一体化的时代背景下,跨境电商正成为推动国际贸易增长的重要力量。武汉星起航电子商务有限公司,作为一家专注于提供一站式解决方案的跨境电商服务商,凭借其丰富的实战经验和专业团队,在行业中取得了令人瞩目的成绩。 自…

前端学习<四>JavaScript基础——02-JavaScript入门:hello world

开始写第一行 JavaScript:hello world JS 代码的书写位置在哪里呢?这个问题,也可以理解成:引入 JS 代码,有哪几种方式?有三种方式:(和 CSS 的引入方式类似) 行内式&…

前端(动态雪景背景+动态蝴蝶)

1.CSS样式 <style>html, body, a, div, span, table, tr, td, strong, ul, ol, li, h1, h2, h3, p, input {font-weight: inherit;font-size: inherit;list-style: none;border-spacing: 0;border: 0;border-collapse: collapse;text-decoration: none;padding: 0;margi…