Stable Diffusion扩散模型【详解】小白也能看懂!!

文章目录

    • 1、Diffusion的整体过程
    • 2、加噪过程
      • 2.1 加噪的具体细节
      • 2.2 加噪过程的公式推导
    • 3、去噪过程
      • 3.1 图像概率分布
    • 4、损失函数
    • 5、 伪代码过程

此文涉及公式推导,需要参考这篇文章: Stable Diffusion扩散模型推导公式的基础知识

1、Diffusion的整体过程

扩散过程是模拟图像加噪的逆向过程,也就是实现去噪的过程,
加噪是如下图从右到左的过程,称为反向扩散过程,
去噪是从左往右的过程,称为前向扩散过程,

在这里插入图片描述

2、加噪过程

加噪过程如下图,下一时刻的图像是在上一时刻图像的基础上加入噪音生成的,
图中公式的含义: x t x_t xt表示 t 时刻的图像, ϵ t \epsilon_t ϵt 表示 t 时刻生成的随机分布的噪声图像, β t \beta_t βt表示 t 时刻指定的常数,不同时刻的 β t \beta_t βt不同,随着时间 t 的递增而增加,但需要注意 β t \beta_t βt的值始终是比较小的,因为要让图像的数值占较大的比例,

在这里插入图片描述

2.1 加噪的具体细节

A、将图像 x x x像素值映射到[-1,1]之间

图像加噪不是在原有图像上进行加噪的,而是通过把图片的每个像素的值转换为-1到1之间,比如像素的值是 x x x,则需要经过下面公式的处理 x 255 × 2 − 1 \frac{x}{255}\times2-1 255x×21,转换到范围是-1到1之间,

代码:

def get_transform():class RescaleChannels(object):def __call__(self, sample):return 2 * sample - 1return torchvision.transforms.Compose([torchvision.transforms.ToTensor(), RescaleChannels()])

B、生成一张尺寸相同的噪声图片,像素值服从标准正态分布
ϵ ∼ N ( 0 , 1 ) \epsilon \sim N(0,1) ϵN(0,1)

x = {Tensor:(2, 3, 32, 32)}
noise = torch.randn_like(x)

C、 α \alpha α β \beta β
每个时刻的 β t \beta_t βt都各不相同,0 < β t \beta_t βt< 1,因为 β t \beta_t βt是作为权重存在的,且 β 1 < β 2 < β 3 < β T − 1 < β T \beta_1< \beta_2< \beta_3< \beta_{T-1}< \beta_T β1<β2<β3<βT1<βT

代码:

betas = generate_linear_schedule(args.num_timesteps,args.schedule_low * 1000 / args.num_timesteps,args.schedule_high * 1000 / args.num_timesteps)

β \beta β的取值代码,比如 β 1 \beta_1 β1取值low, β T \beta_T βT取值high,

# T:1000 Low/β1: 0.0001 high/βT: 0.02
def generate_linear_schedule(T, low, high):return np.linspace(low, high, T)

α t = 1 − β t \alpha_t=1-\beta_t αt=1βt,alphas = 1.0 - betas

alphas = 1.0 - betas
alphas_cumprod = np.cumprod(alphas)
to_torch = partial(torch.tensor, dtype=torch.float32)
self.registerbuffer("betas", totorch(betas))
self.registerbuffer("alphas", totorch(alphas))
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
self.register_buffer("sqrt_alphas_cumpnod", to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer("sart_one_minus_alphas_cumprod", to_torch(np.sqrt(1 - alphas_cumprod)))
self.registerbuffer("reciprocal sart_alphas", totorch(np.sart(1 / alphas)))
self.register_buffer("remove_noise_coeff", to_torch(betas / np.sqrt(1 - alphas_cumprod)))
self.registerbuffer("siqma",to_torch(np.sqrt(betas)))

D、任一时刻的图像 x t x_t xt都可以由原图像 x 0 x_0 x0直接生成(可以由含 x 0 x_0 x0的公式直接表示)

x t x_t xt x 0 x_0 x0的关系: x t = 1 − α t ‾ ϵ + α t ‾ x 0 x_t=\sqrt{1-\overline{\alpha_t}}\epsilon+\sqrt{\overline{\alpha_t}}x_0 xt=1αt ϵ+αt x0 α t = 1 − β t \alpha_t=1-\beta_t αt=1βt α t ‾ = α t α t − 1 . . . α 2 α 1 \overline{\alpha_t}=\alpha_t\alpha_{t-1}...\alpha_2\alpha_1 αt=αtαt1...α2α1

由上式可知, β t \beta_t βt是常数,则 α t \alpha_t αt 1 − α t ‾ \sqrt{1-\overline{\alpha_t}} 1αt α t ‾ \sqrt{\overline{\alpha_t}} αt 也是常数, ϵ \epsilon ϵ也是已知的,所以可以直接由 x 0 x_0 x0生成 x t x_t xt

def perturb_x(self, x, t, noise):return (extract(self.sqrt_alphas_cumprod, t, x.shape) * x +extract(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * noise)
def extract(a, t, x_shape):b, *_ = t.shapeout = a.gather(-1, t)return out.reshape(b, *((1,) * (len(x_shape) - 1)))

2.2 加噪过程的公式推导

加噪过程:

在这里插入图片描述

加噪过程的公式:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结:

在这里插入图片描述

3、去噪过程

去噪是加噪的逆过程,由时间T时刻的图像逐渐去噪到时刻为0的图像,
下面介绍一下由时刻为T的图像 x T x_T xT去噪到时刻为T-1的图像 x T − 1 x_{T-1} xT1,输入为时刻为t的图像 x t x_t xt和时刻t,喂给Unet网络生成 ϵ θ \epsilon_\theta ϵθ,其中 θ \theta θ是Unet网络的所有参数,然后由下图中的 x t − 1 {\bf x}_{t-1} xt1的公式即可生成时刻为t-1的图像 x t − 1 {\bf x}_{t-1} xt1

在这里插入图片描述

3.1 图像概率分布

去噪过程的2个假设:
(1)加噪过程看作马尔可夫链,假设去噪过程也是马尔可夫链,
(2)假设去噪过程是高斯分布,

在这里插入图片描述

假设数据集中有100张图片,每张图片的shape是4x4x3,假设每张图片的每个channel的每个像素点都服从正态分布, x t − 1 x_{t-1} xt1的正态分布的均值 μ \mu μ 和方差 σ 2 \sigma^2 σ2 只和 x t x_t xt有关,已知在t时刻的图像,求t-1时刻的图像,

在这里插入图片描述

1、因为均值和方差 μ ( x t ) \mu(x_t) μ(xt) σ 2 ( x t ) \sigma^2(x_t) σ2(xt) 无法求出,所以我们决定让网络来帮我们预测均值和方差,
2、因为每一个像素都有自己的分布,都要预测出一个均值和方差,所以网络输出的尺寸需要和图像尺寸一致,所以我们选用 Unet 网络,
3、作者在论文中表示,方差并不会影响结果,所以网络只要预测均值就可以了,

4、损失函数

在这里插入图片描述
我们要求极大似然的最大值,需要对 μ \mu μ σ \sigma σ求导,但是对于扩散的过程是不可行的,如下面的公式无法求出,因为 x 1 : x T x_1:x_T x1:xT的不同组合所求出的 x 0 x_0 x0的值也不同,
p ( x 0 ) = ∫ x 1 : x T p ( x 0 ∣ x 1 : x T ) d x 1 : x T p(x_0)=\int_{x_1:x_T}p(x_0|x_1:x_T)d_{x_1:x_T} p(x0)=x1:xTp(x0x1:xT)dx1:xT

为了实现对极大似然函数的求导,把对极大似然求导的问题转换为ELBO :Evidence Lower Bound

在这里插入图片描述

对ELBO的公式继续进行化简,

在这里插入图片描述
在这里插入图片描述
首先来看 q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1}|x_t,x_0) q(xt1xt,x0)表示已知 x 0 x_0 x0 x t x_t xt的情况下推导 x t − 1 x_{t-1} xt1,这个公式是可以求解的,如上图公式推导; p θ ( x t − 1 ∣ x t ) p_{\theta}(x_{t-1}|x_t) pθ(xt1xt)需要使用 Unet 预测出该分布的均值,

q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1}|x_t,x_0) q(xt1xt,x0)公式的推导如下:

在这里插入图片描述
在这里插入图片描述

综上可知,UNet是在预测下面的公式,下面的公式中除了 ϵ \epsilon ϵ之外都是已知量,所以UNet网络实际预测的就是 ϵ \epsilon ϵ
在这里插入图片描述

5、 伪代码过程

下图是训练阶段的伪代码,第1行和第6行表示第2行到第5行的代码一直在循环,
第2行:从数据集中筛选出一张图像,即为 x 0 \bf{x}_0 x0,
第3行:从0到 T T T的均匀分布中筛选出 t t t,源码中 T T T的范围设为1000,
第4行:从均值为0,方差为1的标准正态分布中采样出 ϵ \epsilon ϵ ϵ \epsilon ϵ的size和 x 0 \bf{x}_0 x0的size是相同的,
第5行: x t x_t xt和从0到 T T T的均匀分布中筛选出 t t t喂给Unet,输出 ϵ θ \epsilon_\theta ϵθ,和第4行代码采样出的 ϵ \epsilon ϵ ∣ ∣ ϵ − ϵ θ ( . . . ) ∣ ∣ 2 ||\epsilon-\epsilon_\theta(...)||^2 ∣∣ϵϵθ(...)2的均方差作为损失函数,对这个损失函数求梯度进行参数更新,参数是Unet所有参数的集合 θ \theta θ

在这里插入图片描述

下图是推导/采样/生成图片阶段的伪代码,

第1行:从随机分布中采样一个 x T {\bf x}_T xT
第2行:遍历从 T T T到1,
第3行:从随机分布中采样一个 z \bf{z} z
第4行:已知 z \bf{z} z α t \alpha_t αt σ t \sigma_t σt ϵ θ \epsilon_\theta ϵθ是Unet网络生成的,就可以得到 x t − 1 {\bf x}_{t-1} xt1
循环2-4行代码,

在这里插入图片描述


在这里插入图片描述

参考:
1、CSDN链接:链接
2、哔哩视频:https://www.bilibili.com/video/BV1ju4y1x7L4/?p=5&spm_id_from=pageDriver
3、论文Denoising Diffusion Probabilistic Models:https://arxiv.org/pdf/2006.11239.pdf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/297294.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenHarmony实战:小型系统移植概述

驱动主要包含两部分&#xff0c;平台驱动和器件驱动。平台驱动主要包括通常在SOC内的GPIO、I2C、SPI等&#xff1b;器件驱动则主要包含通常在SOC外的器件&#xff0c;如 LCD、TP、WLAN等 图1 OpenHarmony 驱动分类 HDF驱动被设计为可以跨OS使用的驱动程序&#xff0c;HDF驱动框…

MySQL安装卸载-Linux

目录 1.概述 2.安装 2.1.上传 2.2.解压 ​​​​​​​2.3.安装 ​​​​​​​2.4.启动服务 ​​​​​​​2.5.查询临时密码 ​​​​​​​2.6.修改临时密码 ​​​​​​​2.7.创建用户 ​​​​​​​2.8.分配权限 ​​​​​​​2.9.重新链接 3.卸载 3.1.停…

Redis 全景图(3)--- Redis 应用于缓存

前言 这是关于 Redis 全景图的最后一篇文章。因为一次写太多会限流&#xff0c;我也是没办法&#xff0c;才分成三篇文章来写。这篇文章是关于 Redis 应用于缓存的。 其实为什么要讲这个话题呢&#xff1f; Redis 应用在很多地方呀&#xff0c;为什么一定要挑着这个话题来讲呢…

日常生活中使用的 4 个核心开发工具

长话短说 本文列出了 2024 年我作为开发人员在日常生活中最常用的 4 个工具。✅ 这些工具旨在提高您的编辑技能、终端导航、笔记以及在应用程序容器化之外使用 Docker。另外&#xff0c;最后我还给大家准备了一个小惊喜。 如果您没有使用本文中至少提到的 1-2 个工具&#xf…

JavaSE-10笔记【多线程1(+2024新)】

文章目录 1.进程与线程2.并发与并行3.线程的调度模型4.实现线程4.1 第一种方式&#xff1a;继承Thread4.2 第二种方式&#xff1a;实现Runnable接口4.3 t.start()和t.run()的本质区别&#xff1f;4.4 线程常用的三个方法 5.线程的生命周期&#xff08;把生命周期图背会&#xf…

redis事务(redis features)

redis支持事务&#xff0c;也就是可以在一次请求中执行多个命令。redis中的事务主要是通过MULTI和EXEC这两个命令来实现的。 MULTI命令用来开启一个事务&#xff0c;事务开启之后&#xff0c;所有的命令就都会被放入到一个队列中&#xff0c;最后通过一个EXEC命令来执行事务中…

jsp实现增删改查——(三)用Echarts图表统计学生信息

学生信息CRUD——Echarts显示生活费 目录结构 创建一个js文件夹&#xff0c;将echarts.min.js放到里面。 功能实现 与之前我们写的jsp文件&#xff08;含有html代码、Java代码&#xff09;不同的是&#xff0c;实现Echarts对生活费的显示&#xff0c;需要调用echarts.min.js…

OpenHarmony实战:CMake方式组织编译的库移植

以double-conversion库为例&#xff0c;其移植过程如下文所示。 源码获取 从仓库获取double-conversion源码&#xff0c;其目录结构如下表&#xff1a; 表1 源码目录结构 名称描述double-conversion/cmake/CMake组织编译使用到的模板double-conversion/double-conversion/源…

界面控件Kendo UI for jQuery 2024 Q1亮点 - 新的ToggleButton组件

Telerik & Kendo UI 2024 Q1 版本于2024年初发布&#xff0c;在此版本中将AI集成到了UI组件中&#xff0c;在整个产品组合中引入AI Prompt组件以及10多个新的UI控件、支持Angular 17、多个数据可视化功能增强等。 P.S&#xff1a;Kendo UI for jQuery提供了在短时间内构建…

C++核心编程——4.2(2)对象的初始化和清理

4.2.5 深拷贝与浅拷贝 浅拷贝&#xff1a;编译器提供的简单的赋值拷贝操作 深拷贝&#xff1a;在堆区重新申请空间&#xff0c;进行拷贝操作 示例&#xff1a; class Person { public://无参&#xff08;默认&#xff09;构造函数Person() {cout << "无参构造函数…

基于Uni-app的体育场馆预约系统的设计与实现

个人介绍 hello hello~ &#xff0c;这里是 code袁~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f981;作者简介&#xff1a;一名喜欢分享和记录学习的…

电商技术揭秘六:前端技术与用户体验优化

文章目录 引言一、前端技术在电商中的重要性1.1 前端技术概述1.2 用户体验与前端技术的关系 二、响应式设计与移动优化2.1 响应式设计的原则2.2 移动设备优化策略2.3 响应式设计的工具和框架 三、交互设计与用户体验提升3.1 交互设计的重要性3.2 用户体验的量化与优化3.3 通过前…

asf是什么格式的文件?用手机怎么打开?

由于手机操作系统和硬件的限制&#xff0c;大部分手机并不直接支持asf文件的播放。因此&#xff0c;如果你想在手机上打开asf文件&#xff0c;你可能需要先将文件转换为手机支持的格式&#xff0c;如MP4。可以通过使用一些视频转换软件来实现&#xff0c;比如野葱视频转换器。 …

RuoYi-Vue若依框架-集成mybatis-plus报错Unknown column ‘search_value‘ in ‘field list‘

报错信息 ### Error querying database. Cause: java.sql.SQLSyntaxErrorException: Unknown column search_value in field list ### The error may exist in com/ruoyi/sales/mapper/ZcSpecificationsMapper.java (best guess) ### The error may involve defaultParameter…

2024 批量下载公众号文章内容/阅读数/在看数/点赞数/留言数/粉丝数导出pdf文章备份(带留言):公众号集思录近6000篇历史文章在线查看,找文章方便了

关于公众号文章批量下载&#xff0c;我之前写过很多文章&#xff1a; 视频更新版&#xff1a;批量下载公众号文章内容/话题/图片/封面/音频/视频&#xff0c;导出html&#xff0c;pdf&#xff0c;excel包含阅读数/点赞数/留言数 2021陶博士2006/caoz的梦呓/刘备我祖/六神读金…

go: go.mod file not found in current directory or any parent directory.如何解决?

这个错误表明你正在执行 go get 命令&#xff0c;但是当前目录或任何父目录中都找不到 go.mod 文件。这可能是因为你的项目还没有使用 Go Modules 进行管理。 要解决这个问题&#xff0c;有几种方法&#xff1a; go mod init <module-name> 其中 <module-name>…

构建第一个ArkTS应用(Stage模型)

创建ArkTS工程 若首次打开DevEco Studio&#xff0c;请点击Create Project创建工程。如果已经打开了一个工程&#xff0c;请在菜单栏选择File > New > Create Project来创建一个新工程。选择Application应用开发&#xff08;本文以应用开发为例&#xff0c;Atomic Servi…

QT - 日志:qDebug/qInfo/qWarning/qCritical

篇一、日志打印函数 头文件&#xff1a; #include <QDebug> 代码&#xff1a;qDebug()<<"hello world!"; 其他打印级别&#xff1a; qInfo(): 普通信息 qDebug(): 调试信息 qWarning(): 警告信息 qCritical(): 严重错误 qFatal(): 致命错误 1. qDebug…

【Unity 实用工具篇】| Unity中 实现背景模糊效果,简单易用

前言【Unity 实用工具篇】| Unity 实现背景模糊效果,简单易用一、实现背景模糊效果1.1 介绍1.2 效果展示1.3 使用说明及下载二、插件资源简单介绍2.1 导入下载好的资源2.2 功能介绍2.2.1 捕获特效2.2.2 高级选项

String Encryptor custom Bean not found with name ‘jasyptStringEncryptor‘...

项目采用 spring boot 2.6.13 jasypt-spring-boot-starter 3.0.5 apollo-client 1.6.0 自定义jasyptStringEncryptor&#xff0c;服务器上启动死活报找不到bean jasyptStringEncryptor&#xff0c;采用默认的&#xff0c;密文配置项自然解密失败导致服务无法启动。 经过一…