Spark-Scala语言实战(13)

在之前的文章中,我们学习了如何在spark中使用键值对中的keys和values,reduceByKey,groupByKey三种方法。想了解的朋友可以查看这篇文章。同时,希望我的文章能帮助到你,如果觉得我的文章写的不错,请留下你宝贵的点赞,谢谢。

Spark-Scala语言实战(12)-CSDN博客文章浏览阅读722次,点赞19次,收藏15次。今天开始的文章,我会带给大家如何在spark的中使用我们的键值对方法,今天学习键值对方法中的keys和values,reduceByKey,groupByKey三种方法。希望我的文章能帮助到大家,也欢迎大家来我的文章下交流讨论,共同进步。https://blog.csdn.net/qq_49513817/article/details/137385224今天的文章开始,我会继续带着大家如何在spark的中使用我们的键值对里的方法。今天学习键值对方法中的fullOuterJoin,zip,combineByKey三种方法。

目录

一、知识回顾

二、键值对方法

1.fullOuterJoin

2.zip

3.combineByKey

拓展-方法参数设置


一、知识回顾

 上一篇文章中我们学习了键值对的三种方法,分别是keys和values,reduceByKey,groupByKey。

keys和values分别对应了我们的键与值。

我们可以用它们来创建我们的RDD

 reduceByKey可以进行统计,将有相同键的值进行相加,统一输出。

而 groupByKey方法就是对我们的键值对RDD进行分组了

它可以将我们的相同的键,不同的值组合成一个组。

那么,开始今天的学习吧~ 

二、键值对方法

1.fullOuterJoin

  •  fullOuterJoin()方法用于对两个RDD进行全外连接,保留两个RDD中所有键的连接结果。
import org.apache.spark.{SparkConf, SparkContext}
object p1 {def main(args: Array[String]): Unit = {val conf = new SparkConf().setMaster("local").setAppName("p2")val sc = new SparkContext(conf)// 创建两个RDD(弹性分布式数据集)val p1 = sc.parallelize(Seq(("a1", "1"), ("a2", "2"), ("a3", "3")))val p2 = sc.parallelize(Seq(("a2", "A"), ("a3", "B"), ("a4", "C")))// 将RDD转换为键值对val pp1 = p1.map { case (key, value) => (key, value) }val pp2 = p2.map { case (key, value) => (key, value) }// 执行fullOuterJoin操作val ppp = pp1.fullOuterJoin(pp2)// 收集结果并打印ppp.collect().foreach(println)}
}

我们的代码创建了两个键值对RDD,那么使用 fullOuterJoin方法全外连接那么两个键值对都会连接。

可以看到两个键值对里的键与值都连接上了,互相没有的值即显示None值。 

2.zip

  • zip()方法用于将两个RDD组合成键值对RDD,要求两个RDD的分区数量以及元素数量相同,否则会抛出异常。
  • 将两个RDD组合成Key/Value形式的RDD,这里要求两个RDDpartition数量以及元素数量都相同,否则会抛出异常
import org.apache.spark.{SparkConf, SparkContext}
object p1 {def main(args: Array[String]): Unit = {val conf = new SparkConf().setMaster("local").setAppName("p2")val sc = new SparkContext(conf)// 创建两个RDDval p1 = sc.parallelize(Seq(1, 2, 3))val p2 = sc.parallelize(Seq("a", "b", "c"))// 使用zip方法将两个RDD组合在一起val pp1 = p1.zip(p2)val pp2 = p2.zip(p1)// 收集结果并打印pp1.collect().foreach(println)pp2.collect().foreach(println)}
}

 代码创建了两个不同的RDD键值对,分别使用p1zip方法p2与p2zip方法p1,那么它们输出的结果会是一样的吗?

可以看到是不一样的,谁在前面谁就是键,反之是值。 

3.combineByKey

  • combineByKey()方法是Spark中一个比较核心的高级方法,键值对的其他一些高级方法底层均是使用combineByKey()方法实现的,如groupByKey()方法、reduceByKey()方法等。
  • combineByKey()方法用于将键相同的数据聚合,并且允许返回类型与输入数据的类型不同的返回值。
  • combineByKey()方法的使用方式如下。
    • combineByKey(createCombiner,mergeValue,mergeCombiners,numPartitions=None)
import org.apache.spark.{SparkConf, SparkContext}
object p1 {def main(args: Array[String]): Unit = {val conf = new SparkConf().setMaster("local").setAppName("p2")val sc = new SparkContext(conf)val p1 = sc.parallelize(Seq(("a", 1), ("b", 2), ("a", 3), ("b", 4), ("c", 5)))val p2 = p1.combineByKey(// createCombiner: 将第一个值转换为累加器(v: Int) => v,// mergeValue: 将新的值加到累加器上(c: Int, v: Int) => c + v,// mergeCombiners: 合并两个累加器(c1: Int, c2: Int) => c1 + c2)p2.collect().foreach { case (key, value) =>println(s"Key: $key, Value: $value")}}
}

我的代码中: 

createCombiner: 这个函数定义了如何将每个键的第一个值转换为初始的累加器值。 

代表着每个键,第一个出现的值将作为累加器的初始值。

mergeValue: 这个函数定义了如何将新值与当前的累加器值合并。在我的代码中,我将新值与累加器相加。

代表着每个键的后续值,它们都会被加到当前的累加器值上。

mergeCombiners: 这个函数定义了当两个累加器(对应于同一个键但可能来自不同的分区)需要合并时应该执行的操作。在我的代码中,也是将两个累加器值相加

这确保了无论数据如何在分区之间分布,最终每个键都会得到正确的累加结果。

看看输出效果

可以看到我们的键值对成功累加。

快去试试吧~ 

拓展-方法参数设置

方法参数描述例子
fullOuterJoinotherRDD另一个要与之进行全外连接的RDDrdd1.fullOuterJoin(rdd2)
fullOuterJoinnumPartitions结果RDD的分区数(可选)rdd1.fullOuterJoin(rdd2, numPartitions=10)
zipotherRDD要与之进行zip操作的另一个RDDrdd1.zip(rdd2)
combineByKeycreateCombiner处理第一个出现的每个键的值的函数lambda v: (v, 1)
combineByKeymergeValue合并具有相同键的值的函数lambda acc, v: (acc[0] + v, acc[1] + 1)
combineByKeymergeCombiners合并两个累积器的函数lambda acc1, acc2: (acc1[0] + acc2[0], acc1[1] + acc2[1])
combineByKeynumPartitions结果RDD的分区数(可选)rdd.combineByKey(createCombiner, mergeValue, mergeCombiners, numPartitions=5)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/298795.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【瑞萨RA6M3】1. 基于 vscode 搭建开发环境

基于 vscode 搭建开发环境 1. 准备2. 安装2.1. 安装瑞萨软件包2.2. 安装编译器2.3. 安装 cmake2.4. 安装 openocd2.5. 安装 ninja2.6. 安装 make 3. 生成初始代码4. 修改 cmake 脚本5. 调试准备6. 仿真 1. 准备 需要瑞萨仓库中的两个软件: MDK_Device_Packs.zipse…

浅谈物联网高速公路智慧配电室系统构建方案

关键词:高速公路;智慧供配电;电力监控;配电室智能运维托管;安全隐患 0、引言 随着高速公路事业的不断发展和路网的不断延伸,传统的管理方式已难以满足日益增长的需求,动态管理和安全隐患预警成…

ubuntu16如何使用高版本cmake

1.引言 最近在尝试ubuntu16.04下编译开源项目vsome,发现使用apt命令默认安装cmake的的版本太低。如下 最终得知,ubuntu16默认安装确实只能到3.5.1。解决办法只能是源码安装更高版本。 2.源码下载3.20 //定位到opt目录 cd /opt 下载 wget https://cmak…

ADB 命令之 模拟按键/输入

ADB 命令之 模拟按键/输入 模拟按键/输入 在 ​​adb shell​​​ 里有个很实用的命令叫 ​​input​​&#xff0c;通过它可以做一些有趣的事情。 ​​input​​ 命令的完整 help 信息如下&#xff1a; Usage: input [<source>] <command> [<arg>...] Th…

leetcode.面试题 02.07. 链表相交

题目 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 思路 假a在链表A上移动,b在链表B上移动&#xff0c;a移动完在B上开始&…

javaweb学习(day11-监听器Listener过滤器Filter)

一、监听器Listener 1 Listener介绍 Listener 监听器它是 JavaWeb 的三大组件之一。JavaWeb 的三大组件分别是&#xff1a;Servlet 程 序、Listener 监听器、Filter 过滤器 Listener 是 JavaEE 的规范&#xff0c;就是接口 监听器的作用是&#xff0c;监听某种变化(一般就是对…

XRDP登录ubuntu桌面闪退问题

修改 /etc/xrdp/startwm.sh unset DBUS_SESSION_BUS_ADDRESS unset XDG_RUNTIME_DIR . $HOME/.profile

​如何使用ArcGIS Pro进行洪水淹没分析

洪水淹没分析是一种常见的水文地理信息系统应用&#xff0c;用于模拟和预测洪水事件中可能受到淹没影响的地区&#xff0c;这里为大家介绍一下ArcGIS Pro进行洪水淹没分析的方法&#xff0c;希望能对你有所帮助。 数据来源 教程所使用的数据是从水经微图中下载的DEM数据&…

数据结构(六)——图的应用

6.4 图的应用 6.4.1 最小生成树 对于⼀个带权连通⽆向图G (V, E)&#xff0c;⽣成树不同&#xff0c;每棵树的权&#xff08;即树中所有边上的权值之和&#xff09;也可能不同。设R为G的所有⽣成树的集合&#xff0c;若T为R中边的权值之和最小的生成树&#xff0c;则T称为G的…

怎样把学浪上的视频保存到电脑

怎样把学浪上的视频保存到电脑,这里给大家一个工具,专门用来下载学浪上的视频 这个工具叫做小浪助手.exe 我已经打包好了,有需要的自己取一下 链接&#xff1a;https://pan.baidu.com/s/1y7vcqILToULrYApxfEzj_Q?pwdkqvj 提取码&#xff1a;kqvj --来自百度网盘超级会员V…

【三维重建】3D Gaussian Splatting:实时的神经场渲染

文章目录 摘要一、前言二、相关工作1.传统的场景重建与渲染2.神经渲染和辐射场3.基于点的渲染和辐射场4.*什么是 Tile-based rasterizer (快速光栅化) 三、OVERVIEW四、可微的三维高斯 Splatting五、三维高斯 自适应密度控制的优化1.优化2.高斯的自适应控制 六、高斯分布的快速…

计算机网络—HTTP协议:深入解析与应用实践

​ &#x1f3ac;慕斯主页&#xff1a;修仙—别有洞天 ♈️今日夜电波&#xff1a;ヒステリックナイトガール 1:03━━━━━━️&#x1f49f;──────── 5:06 &#x1f504; ◀️ ⏸ ▶️ ☰…

Photoshop 2024 中文---专业图像处理软件的又一次飞跃

Photoshop 2024是一款功能强大的图像处理软件&#xff0c;广泛应用于创意设计和图像处理领域。它提供了丰富的绘画和编辑工具&#xff0c;包括画笔、铅笔、颜色替换、混合器画笔等&#xff0c;使用户能够轻松进行图片编辑、合成、校色、抠图等操作&#xff0c;实现各种视觉效果…

如何使用极狐GitLab 启用自动备份功能

本文作者&#xff1a;徐晓伟 GitLab 是一个全球知名的一体化 DevOps 平台&#xff0c;很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版&#xff0c;专门为中国程序员服务。可以一键式部署极狐GitLab。 本文主要讲述了如何极狐GitLab 自…

利用Node.js实现拉勾网数据爬取

引言 拉勾网作为中国领先的互联网招聘平台&#xff0c;汇集了丰富的职位信息&#xff0c;对于求职者和人力资源专业人士来说是一个宝贵的数据源。通过编写网络爬虫程序&#xff0c;我们可以自动化地收集这些信息&#xff0c;为求职决策和市场研究提供数据支持。Node.js以其非阻…

基于Python的豆瓣电影评分可视化,豆瓣电影评分预测系统

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

【stm32】I2C通信外设

【stm32】I2C通信外设 概念部分 如果简单应用&#xff0c;选择软件I2C。如果对性能指标要求比较高 选择硬件I2C 有硬件电路自动反转引脚电平&#xff0c;软件只需要写入控制寄存器CR和数据寄存器DR 为了实时监控时序的状态&#xff0c;还要读取状态寄存器SR 写入控制寄存器CR…

nodeJs 实现视频的转换(超详细教程)

前段时间拿到一个视频是4k的&#xff0c;没法播放&#xff0c;于是通过 node.js 和 ffmpeg 实现了视频的转换。在win10 系统下实现。 所需工具 node 16.19 直接安装 ffmpeg-5.1.1-essentials_build 解压后重名 ffmpeg 放到C盘 然后配置下环境变量 Git-2.42.0.2-64-bit 直接…

一键更换ip地址命令的应用方法

在数字化时代&#xff0c;IP地址作为网络设备的标识符&#xff0c;其重要性不言而喻。然而&#xff0c;在某些特定场景下&#xff0c;我们可能需要频繁地更换IP地址&#xff0c;如网络爬虫、隐私保护或测试环境等。这时&#xff0c;一键更换IP地址的命令就显得尤为重要。虎观代…

51单片机实验02- P0口流水灯实验

目录 一、实验的背景和意义 二、实验目的 三、实验步骤 四、实验仪器 五、实验任务及要求 1&#xff0c;从led4开始右移 1&#xff09;思路 ①起始灯 &#xff08;led4&#xff09; ②右移 2&#xff09;效果 3&#xff09;代码☀ 2&#xff0c;从其他小灯并向右依…