数据如何才能供得出、流得动、用得好、还安全

众所周知,数据要素已经列入基本生产要素,同时成立国家数据局进行工作统筹。目前数据要素如何发挥其价值,全国掀起了一浪一浪的热潮。
随着国外大语言模型的袭来,国内在大语言模型领域的应用也大放异彩,与此同时,数据价值在大模型中如何度量也成为了难题。一直以来,区块链被诟病为诈骗工具,在数据要素时代,区块链作为数据流通的权益证据链,可以较好的支撑。得到蔡钰·商业参考3《AIGC会让区块链重焕生机吗?》中提到:

但到了今天,普通人创作的普通内容在预训练AI模型的过程中也可以有了价值,以及各类生成式模型又极大降低了平民创作的门槛,我的观点也开始有了一些改变。未来三年,区块链技术可能会以超乎我们想象的速度成为主流应用。在那之前,你作为普通人,记得好好留言、好好创作,保护好自己的数字版权。

由此可以看出,数据供得出、流得动、用得好需要一种安全机制来保证。对于UGC、PGC而言,因为内容本是公开的,那么通过公开的区块链是可以较好的记录引用、转载的链接,并实现价值链条。

然而,对于政府和企业数据,则问题要复杂得多!且不论复杂情况下的数据如何流动,对于有价值的数据如何发挥价值,也是比较困难的。对于数据提供方而言,首先需要考虑的问题是,是不是真的有价值。这里的价值其实是对收获的价值和所承担的风险+投入成本。

数据“流得动”效用公式

数据收益之和 > 数据供出成本 + 数据交易成本 数据收益之和 > 数据供出成本+数据交易成本 数据收益之和>数据供出成本+数据交易成本

数据收益之和>数据供出成本+数据交易成本
要想数据流动,需要整体流通效益大于成本。数据收益之和大于数据供出成本和数据交易成本之和,数据才能流得动。
数据收益来源于采用数据流通模式获得的价值减去现有旧模式的价值和替换新模式所需成本。要么做大新模式价值,要么探索全新领域。

交易成本由维护市场和基础设施成本构成,只能通过交易量来摊薄成本。一是通过增加供给和需求,二是拓展应用场景,三是拓展服务边界。通过增加数据收益,降低供出成本和交易成本,实现数据流得动。

供得出

数据供得出的条件:
预期收益>预期损失 预期收益>预期损失 预期收益>预期损失
供出成本需要满足数据收益减去投入成本和风险成本。投入成本确定性比较高,风险如果不加分类分级,趋于无穷大。例如:公共数据运营的投入成本不可控,风险成本难估算,需要重点解决。
解决方案:一是通过建设运营移交(BOT)模式减少投入成本,二是通过分类分级压低潜在风险。

供出成本

V 数据 = V 收益 − C 投入 − C 风险 > 0 V_{数据}=V_{收益} - C_{投入}-C_{风险}>0 V数据=V收益C投入C风险>0

收益价值

● 确定性收益
● 未来潜在收益

投入成本

● 数据采购成本
● 数据供出的服务器成本
● 数据加工成本

风险成本

● 数据泄露风险()
● 数据安全风险
● 数据隐私风险

交易成本

C 交易 = C 维护市场 + C 基础设施 C_{交易}=C_{维护市场}+C_{基础设施} C交易=C维护市场+C基础设施
交易成本中基础设施成本和维护市场成本属于硬性成本,只能通过交易量来摊薄。
通过增加供给和需求用户数量,提高数据交易频次;拓展应用场景,扩大交易体量;拓展服务边界,增大交易规模

维护市场成本

● 交易所上架费用
● 广告成本
● 人员成本和管理成本

基础设施成本

数据交易机构需要提供承载数据交易发布的建筑和线上交易场所,这些都属于基础设施投入。相对固定,且边际效用递减。

流得动

数据流得动的条件:
V 数据流动收益压差 = ∑ D ∈ P V C i − V D P = V D P → D C > 0 V C i 表示从第 i 位消费者获得的收益 ∑ D ∈ P V C i 则表示所有从生产者 P 的数据 D 获得的所有收益之和 V D P 表示为提供数据 D ,生产者 P 需要付出的成本 \begin{align} V_{数据流动收益压差} & =\sum_{D \in P} V_{C_i} - V_{D_P}=V_{D_P \to D_C}>0 \\ \\ & V_{C_i} 表示从第i位消费者获得的收益 \\ & \sum_{D \in P} V_{C_i} 则表示所有从生产者P的数据D获得的所有收益之和 \\ & V_{D_P} 表示为提供数据D,生产者P需要付出的成本 \end{align} V数据流动收益压差=DPVCiVDP=VDPDC>0VCi表示从第i位消费者获得的收益DPVCi则表示所有从生产者P的数据D获得的所有收益之和VDP表示为提供数据D,生产者P需要付出的成本
基于上述公式,可以做大消费者的数量,使得总的数据消费收益变大,而生产者付出的成本相对固定,使得数据流通收益压差大于0,这样才能实现数据流得动。

用得好

V 数据价值 = V 新体验 – V 旧体验 – C 替换成本 > 0 V_{数据价值}=V_{新体验}–V_{旧体验}–C_{替换成本}>0 V数据价值=V新体验V旧体验C替换成本>0

按照俞军产品体验公式, 用户价值 = 新体验 − 旧体验 − 替换成本,或者效应 − 成本> 0 用户价值 = 新体验 - 旧体验 - 替换成本,或者 效应 - 成本 > 0 用户价值=新体验旧体验替换成本,或者效应成本>0
成本包括:直接成本和间接成本。
(1)直接成本,包括付出的金钱成本、时间成本、隐私数据、态度等;
(2)交易成本,即为了促成交易,付出的搜寻成本(比如为了找到哪个音乐软件最适合自己,甚至尝试用几个付出的时间)、议价成本(为了买到更便宜的西红柿和摊贩讨价还价付出的时间和口舌)、学习使用的成本、保障成本等。

数据能否用得好,关键在于新体验的增量是否足够。数据要素的交易模式,典型属于新体验模式,旧体验模式可能是目前已经构建的数据使用模式。例如通过爬虫获取数据、通过合同方式购买第三方数据或者模型。新体验主要在效率、实时性、准确性等方面好于就体验模式。

另一方面,如何使得替换成本尽可能的低,也是确保用得好的一个重要方面。例如,通过提升工具能力,降低用户替换成本。

总之,数据要想流得动,需要从供给、流通和消费来思考成本效益最低的解决方案。从数据交易流通的情况分析,是否流得动是关键。只有聚集足够的需求,才能撬动足够的供给,是一个典型的平台交易结果。20年前的淘宝,10年前的美团,都是需要通过补贴使得供需匹配,并提高效率。在数据交易场景中,不同时刻,对供需两方的场景要求不同。现阶段,各大数据交易所还是属于上架供给数据为主,消费者还很难使用目前的数据。

笔者认为,如果有足够的数据供给,应该会有消费者出现。不过基于上述从消费者角度来看,数据收益需要客户旧模式的价值,以及投入替换成本,这个过程往往比较困难。除非,应用场景的新模式具有压倒性的优势。

以上是笔者对于数据如何交易的一些思考,欢迎大家讨论,不妥之处,欢迎拍砖。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/299765.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Web】纯萌新的BUUCTF刷题日记Day1

目录 [RoarCTF 2019]Easy Java [网鼎杯 2018]Fakebook [CISCN2019 华北赛区 Day2 Web1]Hack World [BJDCTF2020]The mystery of ip [网鼎杯 2020 朱雀组]phpweb [BSidesCF 2020]Had a bad day [BJDCTF2020]ZJCTF,不过如此 [BUUCTF 2018]Online Tool [GXYCTF…

数据分析web可视化神器---streamlit框架,无需懂前端也能搭建出精美的web网站页面

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 所属的专栏:数据分析系统化教学,零基础到进阶实战 景天的主页:景天科技苑 文章目录 Streamlit什么是streamli…

刷题之Leetcode283题(超级详细)

283.移动零 283. 移动零https://leetcode.cn/problems/move-zeroes/ 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操作。 示例 1: 输入: nu…

Rasa X 聊天机器人(部署篇)

一、前言 我们先来了解下 Rasa 是什么?Rasa 是一个开源的自然语言处理 (NLP) 框架,用于构建基于文本的对话系统,如聊天机器人和语音助手。接下来再了解下 Rasa X 是什么?Rasa X 是建立在 Rasa 框架之上的图形用户界面 (GUI) 工具…

.NET8 和 Vue.js 的前后端分离

在.NET 8中实现前后端分离主要涉及到两个部分:后端API的开发和前端应用的开发。后端API通常使用ASP.NET Core来构建,而前端应用则可以使用任何前端框架或技术栈,比如Vue.js、React或Angular等。下面是一个简化的步骤指南,帮助你在…

服装店连锁加盟软件系统权威榜单,商陆花连锁日记再次登顶

随着零售业的不断发展和消费者需求的日益多样化,服装店连锁加盟系统作为商家经营的重要工具,其性能和功能已成为衡量服装连锁店竞争力的关键因素。2023年,经过深入的市场调研和专家评审,我们正式发布本年度服装店连锁加盟系统的权…

Java项目——设计一个消息队列(一)【消息队列的背景知识、项目的需求分析、项目的模块划分】

Java项目——设计一个消息队列 ⼀. 消息队列背景知识⼆. 需求分析核⼼概念核⼼ API交换机类型 (Exchange Type)持久化⽹络通信消息应答 三. 模块划分服务器模块客户端模块公共模块 ⼀. 消息队列背景知识 曾经我们学习过 阻塞队列 (BlockingQueue) , 我们说, 阻塞队列最⼤的⽤途…

超市商品管理系统的设计与实现(全套资料)

一、系统架构 前端:vue | view-design 后端:springboot | mybatis-plus 环境:jdk17 | mysql8 | maven | nodejs | redis 二、代码及数据库 三、功能介绍 01. web端-首页 02. web端-超市概况 03. web端-超市区域 04. …

前端实现打开新标签页后,再次定位到该标签页

需求 A 页面中点击按钮可以打开新的标签页 B 并且向 B 页面发送消息数据。 当新的标签页 B 未关闭且符合同源策略时&#xff0c;再次点击按钮&#xff0c;可以自动跳转到标签页 B 并且发生消息数据。 B.html <script>window.onmessage evt > {console.log(evt.d…

彩虹易支付商户进件插件介绍

插件介绍 商户进件插件&#xff0c;支持多个进件渠道类型&#xff0c;并且可扩展。目前已有《支付宝服务商》、《支付宝直付通》、《微信支付服务商》、《微信支付收付通》进件渠道类型。 支持管理员后台和用户中心提交进件&#xff0c;支持付费进件&#xff0c;用户组限制等…

场景文本检测识别学习 day01(传统OCR的流程、常见的损失函数)

传统OCR的流程 传统OCR&#xff1a;传统光学字符识别常见的的模型主要包括以下几个步骤来识别文本 预处理&#xff1a;预处理是指对输入的图像进行处理&#xff0c;以提高文字识别的准确率。这可能包括调整图像大小、转换为灰度图像、二值化&#xff08;将图像转换为黑白两色&…

一则 MySQL 从节点 hung 死问题分析

作者通过 MySQL 从节点的一个 hung 问题&#xff0c;对数据库连接、日志、innodb status 输出等分析&#xff0c;再结合源码、堆栈等最终明确为由于 redo日志配置不合理导致 hung 死问题根本原因。 作者&#xff1a;李锡超&#xff0c;一个爱笑的江苏苏商银行 数据库工程师&…

2024年最新版FL Studio21.2.3 Build 4004 for Mac 版激活下载和图文激活教程

FL studio21中文别名水果编曲软件&#xff0c;是一款全能的音乐制作软件&#xff0c;包括编曲、录音、剪辑和混音等诸多功能&#xff0c;让你的电脑编程一个全能的录音室&#xff0c;它为您提供了一个集成的开发环境&#xff0c;使用起来非常简单有效&#xff0c;您的工作会变得…

【多线程】Callable详解

Callable接口 先看看Callable接口的源码: Callable是一个函数式接口&#xff0c;此时就可以用lambda表达式更简洁地使用它。Callable是个泛型接口&#xff0c;只有一个方法call&#xff0c;该方法返回类型就是传递进来的V类型。call方法还支持抛出异常. 与Callable对应的是Ru…

openstack中windows虚拟机时间显示异常问题处理

文章目录 一、问题描述二、元数据信息总结 一、问题描述 openstack创建出windows虚拟机的时候&#xff0c;发现时间和当前时间相差8小时&#xff0c;用起来很难受。 参考&#xff1a;https://www.cnblogs.com/hraa0101/p/11365238.html 二、元数据信息 通过设置镜像的元数据…

java对象是怎么在jvm中new出来的,在内存中查看java对象成员变量字段属性值

java对象是怎么在jvm中new出来的 查看java对象字段属性在内存中的值 java 对象 创建 流程 附上java源码 public class MiDept {private int innerFiled999;public MiDept() {System.out.println("new MiDept--------------");}public String show(int data) {Sy…

极客时间: 用 Word2Vec, LangChain, Gemma 模拟全本地检索增强生成(RAG)

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

QT的安装

● 查找国内的镜像 ○ 中国科学技术大学&#xff1a;http://mirrors.ustc.edu.cn/qtproject/ ○ 清华大学&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/qt/ ○ 北京理工大学&#xff1a;http://mirror.bit.edu.cn/qtproject/ ○ 中国互联网络信息中心&#xff1a;https:/…

C语言——#define的使用

#define定义常量 基本语法 #define name stuff //&#xff08;#define&#xff09;&#xff08;变量名&#xff09;&#xff08;定义的数值&#xff09; 这里记得&#xff0c;是不加分号的 定义常量&#xff08;这里 就要涉及我们经常说的宏定义&#xff09; 定义常量的使…

网络安全 | 什么是威胁情报?

关注WX&#xff1a;CodingTechWork 威胁情报 威胁情报-介绍 威胁情报也称为“网络威胁情报”(CTI)&#xff0c;是详细描述针对组织的网络安全威胁的数据。威胁情报可帮助安全团队更加积极主动地采取由数据驱动的有效措施&#xff0c;在网络攻击发生之前就将其消弭于无形。威…