2024年妈妈杯数学建模MathorCup数学建模思路B题思路解析+参考成品

1 赛题思路

(赛题出来以后第一时间在群内分享,点击下方群名片即可加群)

2 比赛日期和时间
报名截止时间:2024年4月11日(周四)12:00

比赛开始时间:2024年4月12日(周五)8:00

比赛结束时间:2024年4月16日(周二)9:00

3 组织机构
主办单位:中国优选法统筹法与经济数学研究会

中国优选法统筹法与经济数学研究会是在中国科学技术协会直接领导下的学术性社会团体,是国家一级学会。学会由华罗庚教授于1981年发起成立,至今成立了评价方法与应用、项目管理、计算机模拟、统筹、管理决策与信息系统、工业工程、高等教育管理、数学教育、经济数学与管理数学、应急管理、灰色系统研究,复杂系统研究等十余个专业分会。竞赛是由中国优选法统筹法与经济数学研究会主办,MathorCup高校数学建模挑战赛组委会具体负责竞赛的组织。

4 建模常见问题类型


趁现在赛题还没更新,给大家汇总一下建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题

4.1 分类问题

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

import numpy as np# 定义神经网络类
class NeuralNetwork:def __init__(self):# 随机初始化权重np.random.seed(1)self.weights = 2 * np.random.random((3, 1)) - 1# Sigmoid激活函数def sigmoid(self, x):return 1 / (1 + np.exp(-x))# Sigmoid的导数def sigmoid_derivative(self, x):return x * (1 - x)# 训练神经网络def train(self, inputs, outputs, iterations):for iteration in range(iterations):# 正向传播output = self.predict(inputs)# 计算误差error = outputs - output# 反向传播adjustment = np.dot(inputs.T, error * self.sigmoid_derivative(output))# 更新权重self.weights += adjustment# 预测def predict(self, inputs):return self.sigmoid(np.dot(inputs, self.weights))# 训练数据集
training_inputs = np.array([[0, 0, 1],[1, 1, 1],[1, 0, 1],[0, 1, 1]])training_outputs = np.array([[0, 1, 1, 0]]).T# 初始化神经网络
neural_network = NeuralNetwork()print("随机初始化的权重:")
print(neural_network.weights)# 训练神经网络
neural_network.train(training_inputs, training_outputs, 10000)print("训练后的权重:")
print(neural_network.weights)# 测试新数据
print("新数据预测结果:")
print(neural_network.predict(np.array([1, 0, 0])))

4.2 优化问题

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

from pulp import *# 创建整数规划问题
prob = LpProblem("Integer_Problem", LpMaximize)# 定义决策变量
x1 = LpVariable("x1", lowBound=0, cat='Integer')
x2 = LpVariable("x2", lowBound=0, cat='Integer')# 定义目标函数
prob += 3*x1 + 2*x2, "Objective_Function"# 添加约束条件
prob += 2*x1 + x2 <= 10
prob += x1 + 3*x2 <= 12# 解决问题
prob.solve()# 输出结果
print("Status:", LpStatus[prob.status])
print("Optimal values:")
for v in prob.variables():print(v.name, "=", v.varValue)
print("Optimal value of the objective function:", value(prob.objective))

4.3 预测问题

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

import numpy as np# 灰色预测模型
def grey_prediction(data):n = len(data)# 累加生成序列accumulation = np.cumsum(data)# 计算累加生成序列的一次紧邻均值生成序列avg_accumulation = 0.5 * (accumulation[:-1] + accumulation[1:])# 建立累加生成序列的一次紧邻均值生成序列与原始数据的关系x0 = data[0]B = np.vstack((-avg_accumulation, np.ones(n-1))).TYn = data[1:]# 求解参数a, u = np.dot(np.linalg.inv(np.dot(B.T, B)), np.dot(B.T, Yn))# 模型检验Pn = (x0 - u/a) * np.exp(-a * np.arange(1, n + 1)) + u/a# 预测predict = np.hstack((x0, np.diff(Pn).cumsum()))return predict# 示例数据
data = np.array([120, 130, 125, 135, 140, 145])# 灰色预测
prediction = grey_prediction(data)# 输出预测结果
print("原始数据:", data)
print("灰色预测结果:", prediction)

4.4 评价问题

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

import numpy as np
from sklearn.decomposition import PCA# 示例数据
data = np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9],[10, 11, 12]])# 创建 PCA 模型,指定主成分数量
pca = PCA(n_components=2)# 拟合数据并进行主成分分析
pca.fit(data)# 转换数据到主成分空间
transformed_data = pca.transform(data)# 主成分
components = pca.components_# 方差解释比
explained_variance_ratio = pca.explained_variance_ratio_# 输出结果
print("原始数据:")
print(data)
print("\n主成分:")
print(components)
print("\n转换后的数据:")
print(transformed_data)
print("\n方差解释比:")
print(explained_variance_ratio)

5 建模资料 

六、获取方式

思路及参考成品将在下方名片群文件中更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/300807.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

milvus search api的数据结构

search api的数据结构 此api的功能是向量相似度搜索(vector similarity search) 一个完整的search例子: 服务端collection是一个hnsw类型的索引。 import random from pymilvus import (connections,Collection, )dim 128if __name__ __main__:connections.connect(alias…

【go】模板展示不同k8s命名空间的deployment

gin模板展示k8s命名空间的资源 这里学习如何在前端单页面&#xff0c;调用后端接口展示k8s的资源 技术栈 后端 -> go -> gin -> gin模板前端 -> gin模板 -> html jsk8s -> k8s-go-client &#xff0c;基本资源(deployment等) 环境 go 1.19k8s 1.23go m…

面向低碳经济运行目标的多微网能量互联优化调度matlab程序

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 运用平台 matlabgurobi 程序简介 该程序为多微网协同优化调度模型&#xff0c;系统在保障综合效益的基础上&#xff0c;调度时优先协调微网与微网之间的能量流动&#xff0c;将与大电网的互联交互作为备用…

ES学习笔记01

1.ES安装 下载地址&#xff1a; es官网下载 这里使用的是7.8.0的版本信息 下载完成后解压即可完成安装 2.启动运行 点击bin目录下的elasticsearch.bat文件即可启动 在浏览器中输入localhost:9200显示如下&#xff1a; 在路径中加入对应访问后缀即可访问对应信息 如&#…

c++11 标准模板(STL)本地化库 - 平面类别 - (std::ctype) 定义字符分类表(七)

本地化库 本地环境设施包含字符分类和字符串校对、数值、货币及日期/时间格式化和分析&#xff0c;以及消息取得的国际化支持。本地环境设置控制流 I/O 、正则表达式库和 C 标准库的其他组件的行为。 平面类别 定义字符分类表 std::ctype template< class CharT > clas…

HiveSQL如何生成连续日期剖析

HiveSQL如何生成连续日期剖析 情景假设&#xff1a; 有一结果表&#xff0c;表中有start_dt和end_dt两个字段&#xff0c;&#xff0c;想要根据开始和结束时间生成连续日期的多条数据&#xff0c;应该怎么做&#xff1f;直接上结果sql。&#xff08;为了便于演示和测试这里通过…

lua学习笔记9(字典的学习)

print("********************字典的学习***********************") a{["凌少"]"傻逼",["我"]"天才",["age"]24,["daihao"]114514,["8848"]20000} --访问单个变量 print(a["凌少"])…

社交媒体市场:揭示Facebook的商业模式

在数字化时代&#xff0c;社交媒体已经成为人们生活中不可或缺的一部分。Facebook作为全球最大的社交媒体平台之一&#xff0c;其商业模式的运作方式对于了解社交媒体市场的发展趋势和影响力至关重要。本文将深入探讨Facebook的商业模式&#xff0c;剖析其运作机制&#xff0c;…

hadoop分布式计算组件

什么是计算、分布式计算&#xff1f; 计算&#xff1a;对数据进行处理&#xff0c;使用统计分析等手段得到需要的结果 分布式计算&#xff1a;多台服务器协同工作&#xff0c;共同完成一个计算任务 分布式计算常见的2种工作模式 分散->汇总(MapReduce就是这种模式)中心调…

Docker 引擎离线安装包采集脚本

文章目录 一、场景说明二、脚本职责三、参数说明四、操作示例五、注意事项 一、场景说明 本自动化脚本旨在为提高研发、测试、运维快速部署应用环境而编写。 脚本遵循拿来即用的原则快速完成 CentOS 系统各应用环境部署工作。 统一研发、测试、生产环境的部署模式、部署结构、…

docker 部署 Epusdt - 独角数卡 dujiaoka 的 usdt 支付插件

部署 部署说明 部署之前必须注意的几点事项,该教程不一定适合所有用户: 本教程主要是使用 docker 部署,宝塔用户或宿主机直接安装的用户请直接参考官网教程.本教程是独立部署 epusdt,使用独立的mysql和redis,与dujiaoka项目分开. 在研究的过程中发现 epusdt 也需要用到 mys…

如何成为一名优秀的工程师下

身为工程师&#xff0c;理所当然要重视实践&#xff0c;自然科学不管发展到何时都离不开实验。 电子学本身就是 为了指导工程实践。所以不要谈空洞的理论。现在很多毕业生都面临这样的问题&#xff0c;总是谈一些空洞的理论&#xff0c;甚至错误的但还不以为然的理论。实践可以…

vmware和ubuntu的问题与解决

1.问题与对策 最近使用vmware安装ubuntu16和ubuntu20&#xff0c;遇到了挺多的问题&#xff0c;如下 ubuntu在用过多次后&#xff0c;重启后登录用户名后会出现花屏的现象。 解决方案如下 在键盘上同时按键&#xff1a;Ctrl Alt F4&#xff0c;进入命令行模式&#xff0c;…

Django项目定时任务django-crontab

首先定义一个定时任务函数tasks.py&#xff08;见文章末尾示例&#xff09;&#xff0c;编写函数&#xff0c;然后在setting.py中配置定时任务 1、首先安装django-crontab pip install django-crontab 2、在setting.py中添加应用 (在所有自定义注册app之上) INSTALLED_APPS …

配置vscode用于STM32编译,Debug,github上传拉取

配置环境参考&#xff1a; Docs 用cubemx配置工程文件&#xff0c;用VScode打开工程文件。 编译的时候会有如下报错&#xff1a; vscode出现process_begin :CreateProcess failed 系统找不到指定文件 解决方案&#xff1a;在你的makefile中加上SHELLcmd.exe就可以了 参考…

服务器数据恢复—EqualLogic PS6100系列存储数据恢复案例

服务器数据恢复环境&#xff1a; 某品牌EqualLogic PS6100系列存储阵列是一款容错功能较强的存储设备&#xff0c;具有较高的安全性能。一些硬件故障或者误操作也会破坏该系列存储内的数据&#xff0c;下面分享一个北亚企安数据恢复工程师接到的一个关于EQ PS6100存储的数据恢复…

手机如何在线制作gif?轻松一键在线操作

现在大家都喜欢使用手机来拍摄记录有趣的事物&#xff0c;但是时间长了手机里的视频越来越多导致手机存储空间不够了&#xff0c;这些视频又不想删除时应该怎么办呢&#xff1f;这个很简单&#xff0c;下面就给大家分享一款不用下载手机就能操作的视频转gif网站-GIF中文网&…

从头开发一个RISC-V的操作系统(四)嵌入式开发介绍

文章目录 前提嵌入式开发交叉编译GDB调试&#xff0c;QEMU&#xff0c;MAKEFILE练习 目标&#xff1a;通过这一个系列课程的学习&#xff0c;开发出一个简易的在RISC-V指令集架构上运行的操作系统。 前提 这个系列的大部分文章和知识来自于&#xff1a;[完结] 循序渐进&#x…

Autodesk AutoCAD 2025 (macOS, Windows) - 自动计算机辅助设计软件

Autodesk AutoCAD 2025 (macOS, Windows) - 自动计算机辅助设计软件 AutoCAD 2024 开始原生支持 Apple Silicon&#xff0c;性能提升至 2 倍 请访问原文链接&#xff1a;https://sysin.org/blog/autodesk-autocad/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处…