《神经网络入门》神经网络的思想 (一)

文章目录

  • 生物神经元的结构
  • 如何用数学建模神经元的工作模式
  • 神经网络的结构

在这里插入图片描述

我们知道神经网络是一个模拟人脑的数学建模,首先我们来了解一下生物神经元是怎么工作的。

人的大脑是由非常多神经元相互连接形成的网络构成的。一个神经元,可以从其他神经元接收信号,也可以向其他神经元发送信号。
神经元由细胞体、树突、轴突三个主要部分构成

生物神经元的结构

生物神经元,常简称为神经元,是人脑及动物神经系统中的基本单位。
这些细胞负责处理和传输信息,通过电信号和化学物质进行交流。

神经元的结构可以分为几个主要部分:细胞体、树突、轴突和突触。

  1. 细胞体(Soma)

    细胞体是神经元的“指挥中心”。其主要功能是维持细胞的生命活动,含有细胞核和其他细胞器。细胞核控制着细胞的基本功能和蛋白质的合成,是信息处理和决策的核心区域。

  2. 树突(Dendrites)

    树突是从细胞体延伸出的细长结构,它们如树枝一般分布,主要功能是接收来自其他神经元的信息。树突的表面布满了突触,能够捕捉并转换其他神经元释放的化学信号为电信号,传递给细胞体。

  3. 轴突(Axon)

    轴突是一个细长的管状结构,从细胞体延伸出来,其主要功能是传输电信号。在大多数神经元中,轴突的尾端分叉,与其他神经元的树突或细胞体形成连接。轴突可以非常长,达到几厘米甚至更长,使得神经系统能够在身体的不同部位迅速传递信息。

  4. 突触(Synapses)

    突触是神经元之间的连接点。在这些微小的间隙中,电信号无法直接跨越,因此神经元会通过释放化学物质(即神经递质)来传递信息。这些化学物质能够跨过突触间隙,被下一个神经元的树突上的受体捕捉,从而继续传递信号。
    在这里插入图片描述

    —————————————————————————————

在信息传递的过程中,由树突来接收其他神经元的信号,这个作为输入信号,然后树突传递给细胞体,细胞体会把从其他多个神经元传递进来的输入信号进行合并加工,然后通过轴突前端的突触传递给别的神经元,那么这里我们就需要了解一个非常重要的过程,就是神经元是如何对这些输入信号进行合并加工的。

如何用数学建模神经元的工作模式

当一个神经元从其他多个神经元接受到输入信号以后,如果这些信号之和比较小,没有超过神经元的阈值,这神经元的细胞体就会忽略接受的信号,不做出任何反应。如果信号适和足够大,超过了这个阈值的话,细胞体就会做出反应,向其他神经元传递信号,这个过程成为点火。而这里很有趣的地方是,这个输出信号的大小都是固定的,只要接收到的信号超出阈值,不管超出多少,神经元都只输出固定大小的信号。所以我们可以用0和1来表示点火的输出信号。

总结一下过程就是这三步,第一步,接收来自其他神经元的信号之和作为输入信号,第二步,判断输入信号是否超出阈值,超出就点火。第三步,输出数字信号0或1。
在这里插入图片描述

然后我们将这个过程进行数学化表示,用X来表示输入信号,用Y表示输出信号,无信号是为0,有信号是为1,然后用数学公式来表示神经元点火的这个判定条件。神经元是否点火取决于其他神经元的输入信号之和。但是呢,这里不是直接把它们加起来这么简单。因为不同的神经样有不同的权重,比方说一个人在打网球的时候,来自视觉神经的信号和来自听觉神经的信号对于大脑的处理来说肯定是有不同的权重的,所以输入信号之和我们应该加权求和,
在这里插入图片描述

其中W代表输入信号X对应的权重。当信号之和超过阈值的时候,点火输出信号1没超过就输出信号0,这个过程我们可以用一个单位阶越函数来表示,Z<0的时候输出0 Z>0的时候输出1,其中Z就等于刚才我们列出的这个式子,这个称为神经元的加权输入。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

然后我们再将以上神经元的工作进行数学上的一般化处理。首先呢,神经元的图示我们可以进行简化,用下面这个图来表示这种简化以后的神经元,
在这里插入图片描述
在这里插入图片描述

我们暂且称为神经单元或者人工神经元,和生物神经元区分开来。在生物神经元中,点火的式子是用这个单位阶越函数输出,不是0就是1,但在人工神经元中,我们可以换成别的函数。
这个
在这里插入图片描述

函数a是建模者可以自己去定义的,称为激活函数,这样单位阶越函数就是激活函数的其中一种。而在人工神经网络中,一个非常常用的激活函数是sigmoid函数,
在这里插入图片描述
这里e代表的就是自然底数,所以这个时候输出信号就不是0或者1了,而是<0<1的数值,这也是人工神经元区别于生物神经元的不同。
在这里插入图片描述
所以我们再看这一项,西塔,在这里插入图片描述

它代表神经元点火的阈值,这个值越小,说明神经元越容易兴奋,比较敏感。在数学中,我们这里-西塔换成+b,这样式子变得更漂亮,计算不容易出错,这个b就被称为偏置。
这样神经元我们就在数学上建模好了。大脑中的神经元就是由这种简单的结构和模式构成的,
在这里插入图片描述
但是当数十亿的这种简单的单元构成在一起时,最后呈现出的一种极其复杂的整体性质,比我们人脑的意识、思维、情感,这种现象在生物学中叫做emergece涌现,那我们模仿大脑的这种结构,会不会也涌现出这种智能呢?

神经网络的结构

结果大家已经非常清楚了,由神经单元组成的网络在人工智能领域已经取得了各种让人震惊的成就。我们只要把我们前面总结出的这种简单的神经元模型连接成网络状,就形成了神经网络。比方说chat GPT就是由数十亿的这种神经元模型构成的神经网络。网络的连接方法很多,后面我将主要介绍基础的阶层性神经网络和游戏发展而来的卷积神经网络。
我们先来看一个简单的例子,简单的理解了,复杂的就理解了,因为本质都是一样的。
在这里插入图片描述

我们建立一个神经网络,用来识别通过4×3像素读取的手写数字0和1。构成这个网络的各层分别是输入层、隐藏层、输出层,其中输入层12个神经单元用来读取12个像素信息,
在这里插入图片描述
输出层2个神经单元,其中Sigmoid函数作为激活函数,可以通过比较两个神经单元输出值的大小来判断手写数字是0还是1,

在这里插入图片描述

比方说,读取数字0的时候,上面的神经单元输出的值会比下面的值要大。输入层和输入层都很容易理解,再看最难理解的隐藏层,这里隐藏层的作用在于提取输入图像的特征。
在这里插入图片描述
比如我们看这几个图像都可以看成是数字0,对于人来说很容易判断,但是对于计算机来说就很困难了,因为答案是不标准的。那神经网络是如何进行判断的呢?
隐藏层有3个神经元ABC,他们会从输入层12个神经元那里获取信号大小,然后进行整合以后传递给输出神经元。
在这里插入图片描述
我们可以认为ABC有不同的喜好,他们分别喜欢图片中的模式ABC,于是相对应下面的12个输入神经元在他们这里就有不同的权重。
比方说模式A对应输入神经元4和7,这样对于A来说,4和7有更高的权重,
在这里插入图片描述
而5和8在B这里有更高的权重,6和9在C这里有更高的权重,而对于输出神经元0和1来说,A和C在0这里有更高的权重,B在1这里有更高的权重。
在这里插入图片描述
那假设我们读取这个手写数字0,
在这里插入图片描述
看到这个图像,4769都产生强烈的信号,
在这里插入图片描述
于是47向A传递了很强的信号,因为他们在A这里的权重很大,而69向C传递了很强的信号,而几乎就没有神经元给B传递很强的信号。由于A和C在0这里有非常高的权重,于是输出层的神经元0接收到了来自A和C很强的信号,神经元1接收到很弱的信号,输出0的信号大于输出1的信号,于是神经网络判断该图像的数字为0。
在这里插入图片描述

神经网络的工作原理就是这样的,并不复杂。但是我们如何确定各层神经元之间的权重大小呢?就是一件非常复杂的事情了。这个事情靠人类自己来做是不可能做到的,尤其是像chatGPT这样包含了数十亿个神经元的网络。那怎么办呢?那就提供大量数据,让机器自己来学习吧,此之为 机器学习噢。
在这里插入图片描述

(有空就写,敬请期待…)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/300865.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AugmentedReality之路-平面检测(5)

本文介绍通过AR检测水平平面和垂直平面&#xff0c;并将检测到的平面转化为Mesh 1、在首页添加功能入口 在首页添加一个按钮&#xff0c;命名为Start World Track 2、自定义ExecStartAREvent 创建ARSessionConfig并取名为ARSessionConfig_World 自定义ExecStartAREvent&…

详解TCP/IP五层模型

目录 一、什么是TCP五层模型&#xff1f; 二、TCP五层模型的详细内容 1. 应用层 2. 传输层 3. 网络层 4. 数据链路层 5. 物理层 三、网络设备所在分层 封装和分⽤ 三、Java示例 引言&#xff1a; 在网络通信中&#xff0c;TCP/IP协议是至关重要的。为了更好地理解TCP协议的工…

最新高自定义化的AI翻译(沉浸式翻译),可翻译网页和PDF等文件或者文献(附翻译API总结,Deeplx的api,Deepl的api)

前序 常见问题&#xff1a; 1.有时候想翻译网页&#xff0c;又翻译文献怎么办&#xff1f;下两个软件&#xff1f; 2.什么软件可以翻译视频字幕&#xff1f; 3.什么软件可以翻译PDF文件&#xff1f; 沉浸式翻译介绍 可以翻译文献可以翻译视频字幕可以翻译PDF文件支持OpenAI翻译…

顺序表——功能实现

✨✨欢迎&#x1f44d;&#x1f44d;点赞☕️☕️收藏✍✍评论 个人主页&#xff1a;秋邱博客 所属栏目&#xff1a;C语言 &#xff08;感谢您的光临&#xff0c;您的光临蓬荜生辉&#xff09; 目录 1.0 前言 2.0 线性表 2.1 顺序表 2.2 顺序表的分类 2.3 顺序表功能的实现…

基于SSM的宠物管理系统

点击以下链接获取源码: https://download.csdn.net/download/qq_64505944/89076676?spm=1001.2014.3001.5503 技术:SSM(Spring+SpringMVC+MyBatis)+LayUI+Echarts技术栈,分页采用pagehelper插件,EasyExcel进行Excel文件的导入导出。 宠物管理系统 1 CHINER-宠物管理系…

ESP32S3网络编程学习笔记(1)—— Wi-Fi扫描实验

前言 &#xff08;1&#xff09;如果有嵌入式企业需要招聘湖南区域日常实习生&#xff0c;任何区域的暑假Linux驱动/单片机/RTOS的实习岗位&#xff0c;可C站直接私聊&#xff0c;或者邮件&#xff1a;zhangyixu02gmail.com&#xff0c;此消息至2025年1月1日前均有效 &#xff…

数据结构进阶篇 之 【交换排序】(冒泡排序,快速排序递归、非递归实现)详细讲解

当你觉的自己不行时&#xff0c;你就走到斑马线上&#xff0c;这样你就会成为一个行人 一、交换排序 1.冒泡排序 BubbleSort 1.1 基本思想 1.2 实现原理 1.3 代码实现 1.4 冒泡排序的特性总结 2.快速排序 QuickSort 2.1 基本思想 2.2 递归实现 2.2.1 hoare版 2.2.2 …

vitepress系列-04-规整sideBar左侧菜单导航

规整左侧菜单导航 新建navConfig.ts 文件用来管理左侧导航菜单&#xff1a; 将于其他的配置分开&#xff0c;避免config.mts太大 在config目录下&#xff0c;新建 sidebarModules文件目录用来左侧导航菜单 按模块进行分类&#xff1a; 在config下新建sidebarConfig.ts文件&…

【引子】C++从介绍到HelloWorld

C从介绍到HelloWorld 一、C的介绍1. 简介2. 应用场景3. C的标准![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/e3efb0f207f647729b92c0b5bcd4b330.png)4. C的运行过程 二、Visual Studio的安装1. 什么是Visual Studio2. Visual Studio的安装 三、完成HelloWorld1.…

白色磨砂质感html5页源码

白色磨砂质感html5页源码&#xff0c;简约的基础上加上了团队成员&#xff0c;自动打字特效音乐播放器存活时间 源码下载 https://www.qqmu.com/2980.html

书籍《笔记的方法》读后感

读完《笔记的方法》有几周的时间&#xff0c;书里有些记录的内容&#xff0c;觉得非常有价值的&#xff0c;自己的观点&#xff0c;当下读书&#xff0c;其实并没有那么高大尚&#xff0c;就是存粹陶冶下情操&#xff0c;读书还是有一定作用的&#xff0c;毕竟看书只能慢慢来&a…

软件设计师:11-结构化开发与UML

结构化开发&#xff08;3-4分&#xff09; 一、模块化 二、耦合&#xff08;背&#xff09; 三、内聚&#xff08;背&#xff09; 四、设计原则&#xff08;背&#xff09; 五、系统文档 六、数据流图 数据流的起点或终点必须有一个是加工 判断依据&#xff1a; 1、…

Python | NCL风格 | EOF | 相关 | 回归

这里在linux系统上使用geocat实现NCL风格的图片绘制 Linux上安装 geocat conda update conda conda create -n geocat -c conda-forge geocat-viz conda activate geocat conda update geocat-vizDataset - NOAA Optimum Interpolation (OI) SST V2 # 海温月平均数据 - lsmas…

内容创作策略:打造影响力强大的技术博客

CSDN的朋友你们好&#xff0c;我是未来&#xff0c;今天给大家带来专栏【程序员博主教程&#xff08;完全指南&#xff09;】的第6篇文章——“博客内容创作策略”。本文为技术博主提供了一个精简的内容创作策略指南&#xff0c;涵盖了设定目标、分析竞争、关键词研究、内容规划…

24 个Intellij IDEA好用插件

24 个Intellij IDEA好用插件 一. 安装插件 Codota 代码智能提示插件 只要打出首字母就能联想出一整条语句&#xff0c;这也太智能了&#xff0c;还显示了每条语句使用频率。 原因是它学习了我的项目代码&#xff0c;总结出了我的代码偏好。 Key Promoter X 快捷键提示插件 …

vscode 安装vim插件配置ctrl + c/v功能

搜索Vim插件 插件介绍部分有提示操作 首先安装该插件&#xff0c;然后按照下述步骤设置ctrl相关的快捷键&#xff0c;以便于脱离im快捷键而愉快的敲代码。 1.在“设置”搜索框内搜索vim.handleKeys&#xff0c;选择 Edit in settings.json 2. 设置ctrl-c,ctrl-v等快捷键置为fa…

室友打团太吵?一条命令让它卡死

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;更多干货&#xff0c;请关注专栏《网络安全自学教程》 SYN Flood 1、hping3实现SYN Flood1.1、主机探测1.2、扫描端…

Unity类银河恶魔城学习记录12-7-1 p129 Craft UI - part 1源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili UI_CraftList.cs using System.Collections; using System.Collections.Gen…

zdpdjango_argonadmin使用Django开发一个美观的后台管理系统

初始代码 安装依赖 pip install -r requirements.txt生成管理员账户 迁移模型&#xff1a; python manage.py makemigrations python manage.py migrate创建超级用户&#xff1a; python manage.py createsuperuser启动服务 python manage.py runserver浏览器访问&#xf…

2024新版PHP在线客服系统多商户AI智能在线客服系统源码机器人自动回复即时通讯聊天系统源码PC+H5

搭建环境&#xff1a; 服务器 CPU 2核心 ↑ 运存 2G ↑ 宽带 5M ↑ 服务器操作系统 Linux Centos7.6-7.9 ↑ 运行环境&#xff1a; 宝塔面板 Nginx1.18- 1.22 PHP 7.1-7.3 MYSQL 5.6 -5.7 朵米客服系统是一款全功能的客户服务解决方案&#xff0c;提供多渠道支持…